Skip to main content

Advertisement

Log in

Buffalo Milk Casein Derived Decapeptide (YQEPVLGPVR) Having Bifunctional Anti-inflammatory and Antioxidative Features Under Cellular Milieu

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antioxidants having anti-inflammatory potential will be useful in reducing the progression of many lifestyle associated diseases. Under present investigation, buffalo casein derived decapeptide (YQEPVLGPVR) displayed anti-inflammatory response by suppressed (p < 0.01) murine splenocytes proliferation, reduced inflammatory cytokine levels (Interferon-γ) besides elevated levels of regulatory cytokines (Interleukin-10 and Transforming Growth Factor-β) in splenocyte culture supernatant. Decapeptide also improved the phagocytosis (p < 0.01) of peritoneal macrophages. Subsequently, antioxidative feature of the peptide was also identified by efficient (p < 0.01) free radical scavenging using chemical assays (ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid and ORAC: oxygen radical absorption capacity methods) which was later confirmed for protective action against H2O2 mediated oxidative stress on intestinal epithelial cells by inhibition (p < 0.01) of cellular ROS generation, oxidative products formation along with elevated (p < 0.01) activities of antioxidative enzymes (catalase and glutathione peroxidase). Declined (p < 0.01) mRNA expression of a transcription factor (Nuclear factor erythroid 2-related factor: Nrf-2) involved in redox signalling further established the protective effect of peptide against oxidative stress induced injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Toalá JE, Santiago-López L, Peres CM, Peres C, Garcia HS, Vallejo-Cordoba B, Hernández-Mendoza A (2017) Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J Dairy Sci 100:65–75

    Article  CAS  PubMed  Google Scholar 

  • Agyei D, Potumarthi R, Danquath MK (2015) Food-derived multifunctional bioactive proteins and peptides: sources and production. In: Biotechnology of bioactive compounds. Sources and applications. Wiley, Oxford, pp 483–506

    Google Scholar 

  • Bamdad F, Shin SH, Suh JW, Nimalaratne C, Sunwoo H (2017) Anti-inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules 22:609

    Article  CAS  PubMed Central  Google Scholar 

  • Bergmeyer HU, Gawehn K (1978). Principles of enzymatic analysis. Wiley, Weinheim

    Google Scholar 

  • Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:119–124

    Article  CAS  PubMed  Google Scholar 

  • Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Chem 134:111–116

    CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Dávalos A, Gómez-Cordovés C, Bartolomé B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52:48–54

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Reyes S, Guzmán-Beltrán S, Medina-Campos ON, Pedraza-Chaverri J (2013) Curcumin pretreatment induces Nrf2 and an antioxidant response and prevents hemin-induced toxicity in primary cultures of cerebellar granule neurons of rats. Oxid Med Cell Longev. https://doi.org/10.1155/2013/801418

    Article  PubMed  PubMed Central  Google Scholar 

  • Haq MRU, Kapila R, Kapila S (2015) Release of β-casomorphin-7/5 during simulated gastrointestinal digestion of milk β-casein variants from Indian crossbred cattle (Karan Fries). Food Chem 168:70–79

    Article  CAS  Google Scholar 

  • Homayouni-Tabrizi M, Asoodeh A, Soltani M (2016) Cytotoxic and antioxidant capacity of camel milk peptides: effects of isolated peptide on superoxide dismutase and catalase gene expression. J Food Drug Anal 25:567–575

    Article  CAS  PubMed  Google Scholar 

  • Hwang YP, Choi JH, Yun HJ, Han EH, Kim HG, Kim JY, Park BH, Khanal T, Choi JM, Chung YC, Jeong HG (2011) Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induce liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food Chem Toxicol 49:93–99

    Article  CAS  PubMed  Google Scholar 

  • Jing H, Kitts DD (2004) Redox-related cytotoxic responses to different casein glycation products in Caco-2 and Int-407 cells. J Agric Food Chem 52:3577–3582

    Article  CAS  PubMed  Google Scholar 

  • Jolles P, Fiat AM, Migliore-Samour D, Drouet L, Caen JP (1993) Peptides from milk proteins implicated in antithrombosis and immunomodulation. In New perspectives in infant nutrition, symposium Antwerp. Thieme Medical Publishers, New York, pp 160–172

    Google Scholar 

  • Kamat JP, Devasagayam TPA, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61

    Article  CAS  PubMed  Google Scholar 

  • Kapila R, Kapila S, Kapasiya M, Pandey D, Dang A, Saliganti V (2012) Comparative evaluation of oral administration of probiotic Lactobacilli-fermented milks on macrophage function. Probiotics Antimicrob Proteins 4:173–179

    Article  CAS  PubMed  Google Scholar 

  • Kayser H, Meisel H (1996) Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett 383:18–20

    Article  CAS  PubMed  Google Scholar 

  • Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9:1309–1323

    Article  CAS  PubMed  Google Scholar 

  • Kong B, Peng X, Xiong YL, Zhao X (2012) Protection of lung fibroblast MRC-5 cells against hydrogen peroxide-induced oxidative damage by 0.1–2.8 kDa antioxidative peptides isolated from whey protein hydrolysate. Food Chem 135:540–547

    Article  CAS  PubMed  Google Scholar 

  • Korhonen H (2009) Milk-derived bioactive peptides: from science to applications. J Funct Foods 1:177–187

    Article  CAS  Google Scholar 

  • Lee YJ, Lee SH (2011) Sulforaphane induces antioxidative and antiproliferative responses by generating reactive oxygen species in human bronchial epithelial BEAS-2B cells. J Korean Med Sci 26:1474–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine RLD, Garland CN, Oliver A, Amici I, Climent AG, Lenz BW, Ahn S, Shaltiel S, Stadtman E (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  • Li EW, Mine Y (2004) Immunoenhancing effects of bovine glycomacropeptide and its derivatives on the proliferative response and phagocytic activities of human macrophagelike cells, U937. J Agric Food Chem 52:2704–2708

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2—delta delta CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Alarcon C, Denicola A (2013) Evaluating the antioxidant capacity of natural products: a reviewon chemical and cellular-based assays. Anal Chim Acta 763:1–10

    Article  CAS  PubMed  Google Scholar 

  • Mao XY, Cheng X, Wang X, Wu SJ (2011) Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem 126:484–490

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Yonekura T, Nishizawa N, Kitts DD (2001) In vitro and in vivo inhibition of muscle lipid and protein oxidation by carnosine. Mol Cell Biochem 225:29–34

    Article  CAS  PubMed  Google Scholar 

  • Nielsen DSG, Theil PK, Larsen LB, Purup S (2012) Effect of milk hydrolysates on inflammation markers and drug-induced transcriptional alterations in cell-based models. J Anim Sci 90:403–405

    Article  PubMed  Google Scholar 

  • Otani H, Monni M, Hosono A (1992) Bovine kepa-casein as inhibitor of the proliferation of mouse splenocytes induced by lipopolysaccharide stimulation. Milchwissenschaft 47:512–515

    CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies of qualitative and quantitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  • Park PJ, Jung WK, Nam KS, Shahidi F, Kim SK (2001) Purification and characterization of antioxidative peptides from lecithin-free egg yolk protein. J Am Oil Chem Soc 78:651–656

    Article  CAS  Google Scholar 

  • Parker F, Migliore-samour D, Floch F, Zerial A, Werner GH, Jolles J, Casaretto M, Zahn H, Jolles P (1984) Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur J Biochem 145:677–682

    Article  CAS  PubMed  Google Scholar 

  • Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phelan M, Aherne-Bruce SA, O’Sullivan D, FitzGerald RJ, O’Brien NM (2009) Potential bioactive effects of casein hydrolysates on human cultured cells. Int Dairy J 19:279–285

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. ‎Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Reddi S, Shanmugam VP, Kapila S, Kapila R (2016) Identification of buffalo casein-derived bioactive peptides with osteoblast proliferation activity. Eur Food Res Technol 242:2139–2146

    Article  CAS  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rival SG, Boeriu CG, Wichers HJ (2001) Caseins and casein hydrolysates 2: antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 49:295–302

    Article  CAS  PubMed  Google Scholar 

  • Sandre C, Gleizes A, Forestier F, Gorges-Kergot R, Chilmonczyk S, Leonil J, Moreau MC, Labarre C (2001) A peptide derived from bovine b-casein modulates functional properties of bone marrow-derived macrophages from germfree and human flora-associated mice. J Nutr 131:2936–2942

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:453–462

    Article  CAS  Google Scholar 

  • Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterisation of free radical scaveng- ing activities peptides derived from casein. J Nutr Biochem 11:128–131

    Article  CAS  PubMed  Google Scholar 

  • Tachakittirungrod S, Okonogi S, Chowwanapoonpohn S (2007) Study on antioxidant activity of certain plants in Thailand: mechanism of antioxidant action of guava leaf extract. Food Chem 103:381–388

    Article  CAS  Google Scholar 

  • Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruits extracts. J Food Compost Anal 19:669–675

    Article  CAS  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  • Zhao XH, Fu Y, Yue N (2014) In vitro cytoprotection of modified casein hydrolysates by plastein reaction on rat hepatocyte cells. CYTA J Food 12:40–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the SERB-DST/MOFPI (Department of Science and Technology) and ICAR-National Dairy Research Institute (NDRI), Karnal for providing funding and laboratory facilities to carry out this piece of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kapila.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowmya, K., Bhat, M.I., Bajaj, R.K. et al. Buffalo Milk Casein Derived Decapeptide (YQEPVLGPVR) Having Bifunctional Anti-inflammatory and Antioxidative Features Under Cellular Milieu. Int J Pept Res Ther 25, 623–633 (2019). https://doi.org/10.1007/s10989-018-9708-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9708-7

Keywords

Navigation