Skip to main content
Log in

Isolation Purification and Characterization of Antimicrobial Peptides from Cuminum cyminum L. Seeds

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

In this work, antimicrobial peptides from Cuminum cyminum L. seeds were isolated and purified for the first time by 50% ethanol extraction, C18 reverse phase column chromatography and ion exchange chromatography for separation different peptides fraction. Then isolated fractions were characterized by Gel electrophoresis (SDS-PAGE), high-pressure liquid chromatography and the peptides components and molecular weights were determined by liquid chromatography and mass spectrometry. The extracts were tested against some strains of bacteria (E. coli and Staphylococcus aureus) and one strain of fungi (Candida albicans) using well diffusion and broth dilution assays. The extracts from C. cyminum L. seeds demonstrated a high degree of activity (some antibacterial effect) against the bacteria strains and аntifungal activity against the Candida albicans. However, the study indicates that the crude peptide extracts from C. cyminum L. seeds have promising antimicrobial and antioxidant activities that can be harnessed as leads for potential bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ameh SJ, Obodozie OO, Chindob BA (2012) Herbal clinical trials-historical development and application in the 21st century. Pharmacologia 3(5):121–131

    Article  Google Scholar 

  • Avitabile C, Capparelli R, Rigano MM, Fulgione A, Barone A, Pedone C, Romanelli A (2013) Antimicrobial peptides from plants: stabilization of the γ core of a tomato defensin by intramolecular disulfide bond. J Pept Sci 19(4):240–245

    Article  CAS  PubMed  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1996) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493

    Article  Google Scholar 

  • Bettaieb I, Bourgou S, Sriti J, Msaada K, Limam F, Marzouk B (2011) Essential oils and fatty acids composition of Tunisian and Indian cumin (Cuminum cyminum L.) seeds: a comparative study. J Sci Food Agric 91(11):2100–2107

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cheftel JC, Cuq JL, Lorient D (1989) Proteínas alimentarias: bioquímica—propriedades funcionales, valor nutricional—modificaciones químicas. Acribia, Zaragoza, p 346

    Google Scholar 

  • Chinese Materia Medica, Uygur Pharmacopoeia Fascicule, Shanghai Science and Technology Publisher, Shanghai, 2005, p 205

  • Clemente A, Sánchez-Vioque R, Vioque J, Bautista J, Millán F (1998) Effect of cooking on protein quality of chickpea (Cicer arietinum L.) seeds. Food Chem 62:1–6

    Article  CAS  Google Scholar 

  • “Cumin: commodity factsheet” (PDF). Mintec. 2014. Accessed 8 Mar 2017

  • Durak A, Baraniak B, Jakubczyk A, Swieca M (2013) Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chem 141:2177–2183

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimie E, Habashi AA, Ghareyazie B, Ghannadha M, Mohammadie M (2003) A rapid and efficient method for regeneration of plantlets from embryo explants of cumin (Cuminum cyminum). Plant Cell Tiss Organ Cult 75:19–25

    Article  CAS  Google Scholar 

  • Garrett RH, Grisham CM (2013) Biochemistry, 5th edn. Brooks/Cole, Belmont. Cengage Learning. p 108. ISBN 9781133106296. Chromatography on SephadexG-100.

    Google Scholar 

  • Gobba C De, Tompa G, J Otte (2014) Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsuki-bacterium ikkense. Food Chem 165:205–215

    Article  CAS  PubMed  Google Scholar 

  • Haavik H, Thomassen S (1973) A bacitracin-negative mutant of Bacillus licheniformis which is able to sporulate. J Gen Microbiol 76:451–454

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl AcadSci USA 97(16):8856–8861

    Article  CAS  Google Scholar 

  • Hu LF, Li GZ (2005) Research advances in chemical constituents and their bioactivities of Cuminum cyminum L. Acta Botanica Sinca 25(8):1700–1705

    CAS  Google Scholar 

  • Jiang Yi Sha Ke, De Er A. Ka, Chinese Medical Encyclopedia, Uygur Traditional Medicine, published by Shanghai Science and Technology Publisher, Shanghai, 100 (2005)

  • Kang SJ, Kim DH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides: their physicochemical properties and therapeutic application. Arch Pharm Res 35(3):409–412

    Article  CAS  PubMed  Google Scholar 

  • Kikugawa K, Ido Y, Mikami A (1981) Studies on peroxidized lipids. VI. Fluorescents products derived from the reaction of primary amines, malonaldehyde and monofunctional aldehydes. J Am Oil Chem Soc 61:1574–1581

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Laemmli UK, Favre M (1973) Gel electrophoresis of proteins. J Mol Biol 80:575–599

    Article  CAS  PubMed  Google Scholar 

  • Mahatmanto T, Poth AG, Mylne JS, Craik DJ (2014) A comparative study of extraction methods reveals preferred solvents for cystine knot peptide isolation from Momordica cochinchinensis seeds. Fitoterapia 95:22–33

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed  Google Scholar 

  • Noble JE, Bailey JA (2009) Quantitation of protein. Methods Enzymol 463:73–95

    Article  CAS  Google Scholar 

  • Norman J (1990) The complete book of spices. Doerling Kindersley, London, p 34

    Google Scholar 

  • Osman K, Evangelopoulos D. Basavannacharya C (2012) An antibacterial from hypericum acmosepalum inhibits ATP dependent MurE lygas from Mycobacterium tuberclosis. Int J Antimicrob Agenta 39:124–129

    Article  CAS  Google Scholar 

  • Purohit P, Nustafa M, Osmani Z (1983) Insecticidal properties of plant extract of Cuminum cyminum L. Sci Cult 49(4):101–103

    Google Scholar 

  • Rackis JJ, Sessa DJ, Honing DH (1979) Flavor problems of vegetable food proteins. J Am Oil Chem Soc 56:262–271

    Article  CAS  Google Scholar 

  • Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  Google Scholar 

  • Riefler J (2010) Types of antimicrobial peptides. http://www.livestrong.com/article/156359-types-of-antimicrobial-peptides

  • Roodbari N, Lahooti M, Roodbari S, Aein A, Ganjali A (2013) The effect of salinity stress on germination and seedling growth of cumin (Cuminum cyminum L.). Agric Food Technol 3:1–4

    Google Scholar 

  • Sahu (2013). “Health benefits of cumin”. Times of India. Accessed 17 Aug 2014

  • Sánchez-Vioque R, Clemente A, Vioque J, Bautista J, Millán F (1998a) Neutral lipids of chickpea flour and protein isolates. J Am Oil Chem Soc 75:851–855

    Article  Google Scholar 

  • Sánchez-Vioque R, Clemente A, Vioque J, Bautista J, Millán F (1998b) Polar lipids of defatted chickpea (Cicer arietinum L.) flour and protein isolates. Food Chem 63:357–361

    Article  Google Scholar 

  • Schuerholz T, Brandenburg K, Marx G (2012) Antimicrobial peptides and their potential application in inflammation and sepsis. Crit Care 16:207–215

    Article  PubMed  Google Scholar 

  • Singh G, Upadhyay RK (1991) Fungitoxic activity of cumaldehyde, main constituent of the Cuminum cyminum oil. Fitoterapia 61(1):86

    Google Scholar 

  • Tagboto S, Townson S (2001) Antiparasitic properties of medicinal plants and naturally occuring products. Adv Parasitol 50:199–295

    Article  CAS  PubMed  Google Scholar 

  • Turahun X, Hupur M (2003) J Med Pharm Chin Minor 11, 20

    Google Scholar 

  • Xie X-G, Yili A (2011) Chemical constituents from the seed of Cuminum cyminum L. Chin Tradit Pat Med 33(11):1939

    CAS  Google Scholar 

  • Yili A, Ling MQ (2012) New peptide from seeds of Cicer arietinum. Chem Nat Compd 47(6):959

    Article  CAS  Google Scholar 

  • Yili A, Ma QL, Lv QY, Gao YH, Zhao B, Veshkurova ON, Salikhov SI, Aisa HA (2012) Antioxidant peptides from Cicer arietinum of Xinjiang, China. Chem Nat Compd 48:643

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by project of «Supporting Xinjiang 201491160» and 2014 «The light of the western» talent training plan; and the Training Project of Xinjiang Autonomous Region for Technological Innovation of Youth Talents for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abulimiti Yili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Animal and Human Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijiti, Y., Wali, A., Jian, Y. et al. Isolation Purification and Characterization of Antimicrobial Peptides from Cuminum cyminum L. Seeds. Int J Pept Res Ther 24, 525–533 (2018). https://doi.org/10.1007/s10989-017-9635-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9635-z

Keywords

Navigation