Skip to main content
Log in

Stable limits for associated regularly varying sequences

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

For a stationary sequence that is regularly varying and associated, we give conditions guaranteeing that partial sums of this sequence, under normalization related to the exponent of regular variation, converge in distribution to a stable non-Gaussian limit. The obtained limit theorem admits a natural extension to the functional convergence in Skorokhod’s M1 topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Avram and M.S. Taqqu, Weak convergence of sums of moving averages in the α-stable domain of attraction, Ann. Probab., 20:483–503, 1992.

    Article  MathSciNet  Google Scholar 

  2. B. Basrak, R.A. Davis, and T. Mikosch, A characterization of multivariate regular variation, Ann. Appl. Probab., 12:908–920, 2002.

    Article  MathSciNet  Google Scholar 

  3. B. Basrak and J. Segers, Regularly varying multivariate time series, Stochastic Processes Appl., 119:1055–1080, 2009.

    Article  MathSciNet  Google Scholar 

  4. A. Bulinski and A. Shashkin, Limit Theorems for Associated Random Fields and Related Systems, World Scientific, Singapore, 2007.

    Book  Google Scholar 

  5. R.M. Burton, A.R. Dabrowski, and H. Dehling, An invariance principle for weakly associated random vectors, Stochastic Processes Appl., 23:301–306, 1986.

    Article  MathSciNet  Google Scholar 

  6. A.R. Dabrowski and A. Jakubowski, Stable limits for associated random variables, Ann. Probab., 22(1):1–16, 1994.

    Article  MathSciNet  Google Scholar 

  7. J. Damarackas and V. Paulauskas, Properties of spectral covariance for linear processes with infinite variance, Lith. Math. J., 54(3):252–276, 2014.

    Article  MathSciNet  Google Scholar 

  8. J. Damarackas and V. Paulauskas, Spectral covariance and limit theorems for random fields with infinite variance, J. Multivariate Anal., 153:156–175, 2017.

    Article  MathSciNet  Google Scholar 

  9. J. Esary, F. Proschan, and D.J. Walkup, Association of random variables with applications, Ann. Math. Stat., 38:1466–1474, 1967.

    Article  MathSciNet  Google Scholar 

  10. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., Wiley, New York, 1971.

  11. Ch. Houdré, V. Pérez-Abreu, and D. Surgailis, Interpolation, correlation identities, and inequalities for infinitely divisible variables, J. Fourier Anal. Appl., 4:651–668, 1998.

    Article  MathSciNet  Google Scholar 

  12. J. Jacod and A.N. Shiryayev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987.

    Book  Google Scholar 

  13. M-L.T. Lee, S.T. Rachev, and G. Samorodnitsky, Association of stable random variables, Ann. Probab., 18:1759–1764, 1990.

    Article  MathSciNet  Google Scholar 

  14. S. Louhichi and E. Rio, Functional convergence to stable Lévy motions for iterated random Lipschitz mappings, Electron. J. Probab., 16:2452–2480, 2011.

    Article  MathSciNet  Google Scholar 

  15. C.M. Newman, Normal fluctuations and the FKG inequalities, Commun. Math. Phys., 74:119–128, 1980.

    Article  MathSciNet  Google Scholar 

  16. CM. Newman and A.L.J. Wright, An invariance principle for certain dependent sequences, Ann. Probab., 9:671–675, 1981.

    Article  MathSciNet  Google Scholar 

  17. V. Paulauskas, Some remarks on multivariate stable distributions, J. Multivariate Anal., 6:356–368, 1976.

    Article  MathSciNet  Google Scholar 

  18. V. Paulauskas, On σ-covariance, long, short, and negative memories for sequences of random variables with infinite variance, 2013, arXiv:1311.0606v1.

  19. V. Paulauskas, A note on linear processes with tapered innovations, Lith. Math. J., 2019, available from: https://doi.org/10.1007/s10986-019-09445-w.

  20. S.I. Resnick, Point processes, regular variation and weak convergence, Adv. Appl. Probab., 18:66–138, 1986.

    Article  MathSciNet  Google Scholar 

  21. S. I. Resnick, Association and multivariate extreme value distributions, in C.C. Heyde (Ed.), Gani Festschrift: Studies in Statistical Modeling and Statistical Science, Statistical Society of Australia, 1988, pp. 261–271.

  22. G. Samorodnitsky, Association of infintely divisible random vectors, Stochastic Processes Appl., 55:45–55, 1995.

    Article  MathSciNet  Google Scholar 

  23. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994.

    MATH  Google Scholar 

  24. A. V. Skorohod, Limit theorems for stochastic processes, Theory Probab. Appl., 1:261–290, 1956.

    Article  MathSciNet  Google Scholar 

  25. W. Whitt, Stochastic-Process Limits. An introduction to Stochastic-Process Limits and Their Application to Queues, Springer, New York, 2002.

    Book  Google Scholar 

  26. H. Yu, A Glivenko–Cantelli lemma and an invariance principle for empirical processes of associated sequences, Probab. Theory Relat. Fields, 95:357–370, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Jakubowski.

Additional information

Dedicated to Professor Vygantas Paulauskas on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakubowski, A. Stable limits for associated regularly varying sequences. Lith Math J 59, 535–544 (2019). https://doi.org/10.1007/s10986-019-09463-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-019-09463-8

MSC

Keywords

Navigation