Skip to main content
Log in

Uniform asymptotic normality of self-normalized weighted sums of random variables*

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let X, X1, X2, . . . be a sequence of nondegenerate i.i.d. random variables, let μ = {μni : n ∈ +, i = 1, …, n} be a triangular array of possibly random probabilities on the interval [0, 1], and let \( \mathcal{F} \) be a class of functions with bounded q-variation on [0, 1] for some q ∈ [1, 2). We prove the asymptotic normality uniformly over \( \mathcal{F} \) of self-normalized weighted sums \( {\sum}_{i=1}^n{X}_i{\mu}_{ni} \) when μ is the array of point measures, uniform probabilities, and their random versions. Also, we prove a weak invariance principle in the Banach space of functions of bounded p-variation with p > 2 for partial-sum processes, polygonal processes, and their adaptive versions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, John Wiley & Sons, 1980.

  2. V. Bentkus and F. Götze, The Berry–Esseen bound for Student’s statistic, Ann. Probab., 24:491–503, 1996.

    Article  MathSciNet  Google Scholar 

  3. G.P. Chistyakov and F. Götze, Limit distributions of Studentized means, Ann. Probab., 32:28–77, 2004.

    Article  MathSciNet  Google Scholar 

  4. M. Csórgò, B. Szyszkowicz, and Q. Wang, Darling–Erdös theorem for self-normalized sums, Ann. Probab., 31(2): 676–692, 2003.

    Article  MathSciNet  Google Scholar 

  5. M. Csórgò, B. Szyszkowicz, and Q. Wang, Donsker’s theorem for self-normalized partial sums processes, Ann. Probab., 31(3):1228–1240, 2003.

    Article  MathSciNet  Google Scholar 

  6. R.M. Dudley, Fréchet differentiability, p-variation and uniform Donsker classes, Ann. Probab., 20:1968–1982, 1992.

    Article  MathSciNet  Google Scholar 

  7. R.M. Dudley, Uniform Central Limit Theorems, Cambridge Univ. Press, Cambridge, 1999.

    Book  Google Scholar 

  8. R.M. Dudley, Real Analysis and Probability, Cambridge Univ. Press, Cambridge, 2002.

    Book  Google Scholar 

  9. R.M. Dudley and R. Norvaiša, Concrete Functional Calculus, Springer, New York, 2010.

    MATH  Google Scholar 

  10. B. Efron, Student’s t-test under symmetry conditions, J. Am. Stat. Assoc., 64:1278–1302, 1969.

    MathSciNet  MATH  Google Scholar 

  11. W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed., Wiley, New York, 1971.

    MATH  Google Scholar 

  12. E. Giné, F. Götze, and D.M. Mason, When is the Student t-statistic asymptotically standard normal?, Ann. Probab., 25:1514–1531, 1997.

    Article  MathSciNet  Google Scholar 

  13. P.S. Griffin and J.D. Kuelbs, Self-normalized laws of the iterated logarithm, Ann. Probab., 17:1571–1601, 1989.

    Article  MathSciNet  Google Scholar 

  14. S.V. Kisliakov, A remark on the space of functions of bounded p-variation, Math. Nachr., 119:137–140, 1984.

    Article  MathSciNet  Google Scholar 

  15. B.F. Logan, C.L. Mallows, S.O. Rice, and L.A. Shepp, Limit distributions of selfnormalized sums, Ann. Probab., 1:788–809, 1973.

    Article  Google Scholar 

  16. D.M. Mason, The asymptotic distribution of self-normalized triangular arrays, J. Theor. Probab., 18(4):853–870, 2005.

    Article  MathSciNet  Google Scholar 

  17. R. Norvaiša and A. Račkauskas, Uniform asymptotic normality of weighted sums of short-memory linear processes, arXiv:1909.11434.

  18. R. Norvaiša and A. Račkauskas, Convergence in law of partial sum processes in p-variation norm, Lith. Math. J., 48(2):212–227, 2008.

    Article  MathSciNet  Google Scholar 

  19. A. Račkauskas and C. Suquet, Invariance principles for adaptive self-normalized partial sums processes, Stochastic Processes Appl., 95, 2001.

    Article  MathSciNet  Google Scholar 

  20. Q.-M. Shao, Self-normalized large deviations, Ann. Probab., 25:285–328, 1997.

    Article  MathSciNet  Google Scholar 

  21. Q.-M. Shao and Q. Wang, Self-normalized limit theorems: A survey, Probab. Surv., 10:69–93, 2013.

    Article  MathSciNet  Google Scholar 

  22. A.W. Van der Vaart and J.A. Wellner, Weak Convergence and Empirical Processes with Applications to Statistics, Springer, New York, 1996.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rimas Norvaiša.

Additional information

Dedicated to our teacher Vygantas Paulauskas

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

* The research supported by the Research Council of Lithuania, grant No. S-MIP-17-76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norvaiša, R., Račkauskas, A. Uniform asymptotic normality of self-normalized weighted sums of random variables*. Lith Math J 59, 575–594 (2019). https://doi.org/10.1007/s10986-019-09461-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-019-09461-w

MSC

Keywords

Navigation