Skip to main content
Log in

A Berry–Esséen bound for H-variation of a Gaussian process*

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let G := (X 1,…,X n ) be a vector of standard Gaussian random variables. For a function H : ℝ → ℝ, we consider the normalized weighted H-sum of G, and under suitable hypotheses on G and H, we prove a Berry–Esséentype bound for it. We also prove a functional central limit theorem for a partial-sum process corresponding to such sums. The proof of the former theorem is based on a bound of the Kolmogorov distance between a random variable having a Wiener chaos representation and a standard normal random variable. These theorems extend the known results for the Hermite variations and are applied to several classes of Gaussian stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Aazizi and K. Es-Sebaiy, Berry–Esséen bounds and almost sure CLT for the quadratic variation of the bifractional Brownian motion, 2012, arXiv:1203.2786v3.

  2. O.E. Barndorff-Nielsen, J.M. Corcuera, and M. Podolskij, Power variation for Gaussian processes with stationary increments, Stochastic Processes Appl., 119(6):1845–1865, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Biermé, A. Bonami, I. Nourdin, and G. Peccati, Optimal Berry–Esseén rates on the Wiener space: The barrier of third and fourth cumulants, ALEA, Lat. Am. J. Probab. Math. Stat., 9(2):473–500, 2012.

  4. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

    MATH  Google Scholar 

  5. T. Bojdecki, L.G. Gorostiza, and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation time, Stat. Probab. Lett., 69:405–419, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.M. Corcuera, D. Nualart, and J.H.C. Woerner, Power variation of some integral fractional processes, Bernoulli, 12(4):713–735, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Guyon and J. Leon, Convergence en loi des H-variations d’un processus gaussien stationnaire sur R, Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. B, 25(3):265–282, 1989.

  8. C. Houdré and J. Villa, An example of infinite dimensional quasihelix, Contemporary Mathematics, 366:195–201, 2003.

    Article  MATH  Google Scholar 

  9. P. Lévy, Le mouvement brownien plan, Am. J. Math., 62:487–550, 1940.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Malukas and R. Norvaiša, A central limit theorem for a weighted power variation of a Gaussian process, Lith. Math. J., 54(3):323–344, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Norvaiša, A complement to Gladyshev’s theorem, Lith. Math. J., 51(1):26–35, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Norvaiša, Weighted power variation of integrals with respect to a Gaussian process, Bernoulli, 21(2):1260–1288, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Nourdin and G. Peccati, Stein’s method onWiener chaos, Probab. Theory Relat. Fields, 145(1–2):75–118, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Nourdin, G. Peccati, andM. Podolskij, Quantitative Breuer–Major theorems, Stochastic Processes Appl., 121:793–812, 2010.

  15. D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed., Probability and Its Applications, Springer-Verlag, Berlin, Heidelberg, 2006.

    MATH  Google Scholar 

  16. G. Shen, L. Yan, and J. Cui, Berry–Esséen bounds and almost sure CLT for quadratic variation of weighted fractional Brownian motion, J. Inequal. Appl., 213, Article ID 275, 13 pp., 2013.

  17. M.S. Taqqu, Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence, Z. Wahrscheinlichkeitstheor. Verw. Geb., 40(3):203–238, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Tudor, Berry–Esséen bounds and almost sure CLT for the quadratic variation of the bifractional Brownian motion, J. Math. Anal. Appl., 375:667–676, 2011.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimondas Malukas.

Additional information

This research was funded by a grant (No. MIP-053/2012) from the Research Council of Lithuania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malukas, R. A Berry–Esséen bound for H-variation of a Gaussian process*. Lith Math J 56, 77–106 (2016). https://doi.org/10.1007/s10986-016-9306-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-016-9306-3

Keywords

Navigation