Skip to main content

Advertisement

Log in

A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Recurrent event data with a terminal event commonly arise in longitudinal follow-up studies. We use a weighted composite endpoint of all recurrent and terminal events to assess the overall effects of covariates on the two types of events. A semiparametric additive rates model is proposed to analyze the weighted composite event process and the dependence structure among recurrent and terminal events is left unspecified. An estimating equation approach is developed for inference, and the asymptotic properties of the resulting estimators are established. The finite-sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a bladder cancer study is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    MathSciNet  MATH  Google Scholar 

  • Bedair K, Hong Y, Li J, Al-Khalidi HR (2016) Multivariate frailty models for multi-type recurrent event data and its application to cancer prevention trial. Comput Stat Data Anal 101:161–173

    MathSciNet  MATH  Google Scholar 

  • Byar DP (1980) The veterans administration study of chemoprophylaxis for recurrent stage I bladder tumors: comparisons of placebo, pyridoxine and topical thiotepa. In: Pavone-Macaluso M, Smith PH, Edsmyr F (eds) Bladder tumors and other topics in urological oncology. Plenum, New York, pp 363–370

    Google Scholar 

  • Cai J, Schaubel DE (2004) Marginal mean/rates models for multiple type recurrent event data. Lifetime Data Anal 10:121–138

    MathSciNet  MATH  Google Scholar 

  • Chen BE, Cook RJ (2004) Tests for multivariate recurrent events in the presence of a terminal event. Biostatistics 5:129–143

    MATH  Google Scholar 

  • Chen X, Wang Q, Cai J, Shankar V (2012) Semiparametric additive marginal regression models for multiple type recurrent events. Lifetime Data Anal 18:504–527

    MathSciNet  MATH  Google Scholar 

  • Cook RJ, Lawless JF (1997) Marginal analysis of recurrent events and a terminating event. Stat Med 16:911–924

    Google Scholar 

  • Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer, New York

    MATH  Google Scholar 

  • Cook RJ, Lawless JF, Lakhal-Chaieb L, Lee KA (2009) Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. J Am Stat Assoc 104:60–75

    MathSciNet  MATH  Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J R Stat Soc, Ser B 34:187–200 (with discussion)

    MathSciNet  MATH  Google Scholar 

  • Dong L, Sun L (2015) A flexible semiparametric transformation model for recurrent event data. Lifetime Data Anal 21:20–41

    MathSciNet  MATH  Google Scholar 

  • Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509

    MathSciNet  MATH  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York

    MATH  Google Scholar 

  • Ghosh D, Lin DY (2000) Nonparametric analysis of recurrent events and death. Biometrics 56:554–562

    MathSciNet  MATH  Google Scholar 

  • Ghosh D, Lin DY (2002) Marginal regression models for recurrent and terminal events. Stat Sin 12:663–688

    MathSciNet  MATH  Google Scholar 

  • Huang CY, Wang MC (2004) Joint modeling and estimation for recurrent event processes and failure time data. J Am Stat Assoc 99:1153–1165

    MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Kalbfleisch JD, Schaubel DE, Ye Y, Gong Q (2013) An estimating function approach to the analysis of recurrent and terminal events. Biometrics 69:366–374

    MathSciNet  MATH  Google Scholar 

  • Lawless JF, Nadeau C (1995) Some simple robust methods for the analysis of recurrent events. Technometrics 37:158–168

    MathSciNet  MATH  Google Scholar 

  • Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    MathSciNet  MATH  Google Scholar 

  • Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71

    MathSciNet  MATH  Google Scholar 

  • Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc, Ser B 62:711–730

    MathSciNet  MATH  Google Scholar 

  • Liu L, Wolfe RA, Huang X (2004) Shared frailty models for recurrent events and a terminal event. Biometrics 60:747–756

    MathSciNet  MATH  Google Scholar 

  • Ma H, Peng L, Zhang L, Lai HCJ (2018) Generalized accelerated recurrence time model for multivariate recurrent event data with missing event type. Biometrics 74:954–965

    MathSciNet  MATH  Google Scholar 

  • Mao L, Lin DY (2016) Semiparametric regression for the weighted composite endpoint of recurrent and terminal events. Biostatistics 17:390–403

    MathSciNet  Google Scholar 

  • Neaton JD, Gray G, Zuckerman BD, Konstam MA (2005) Key issues in end point selection for heart failure trials: composite end points. J Card Fail 11:567–575

    Google Scholar 

  • Ning J, Rahbar MH, Choi S, Piao J, Hong C, del Junco DJ, Rahbar E, Fox EE, Holcomb JB, Wang MC (2017) Estimating the ratio of multivariate recurrent event rates with application to a blood transfusion study. Stat Methods Med Res 26:1969–1981

    MathSciNet  Google Scholar 

  • Pepe MS, Cai J (1993) Some graphical displays and marginal regression analyses for recurrent failure times and time dependent covariates. J Am Stat Assoc 88:811–820

    MATH  Google Scholar 

  • Pollard D (1990) Empirical processes: theory and applications. Institute of Mathematical Statistics, California

    MATH  Google Scholar 

  • Qu L, Sun L, Liu L (2017) Joint modeling of recurrent and terminal events using additive models. Stat Interface 10:699–710

    MathSciNet  MATH  Google Scholar 

  • Schaubel DE, Cai J (2006a) Rate/mean regression for multiple-sequence recurrent event data with missing event category. Scand J Stat 33:191–207

    MathSciNet  MATH  Google Scholar 

  • Schaubel DE, Cai J (2006b) Multiple imputation methods for recurrent event data with missing event category. Can J Stat 34:677–692

    MathSciNet  MATH  Google Scholar 

  • Schaubel DE, Zeng D, Cai J (2006) A semiparametric additive rates model for recurrent event data. Lifetime Data Anal 12:389–406

    MathSciNet  MATH  Google Scholar 

  • Sun L, Tong X, Zhou X (2011) A class of Box-Cox transformation models for recurrent event data. Lifetime Data Anal 17:280–301

    MathSciNet  MATH  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, New York

    MATH  Google Scholar 

  • Wang MC, Qin J, Chiang CT (2001) Analyzing recurrent event data with informative censoring. J Am Stat Assoc 96:1057–1065

    MathSciNet  MATH  Google Scholar 

  • Xu G, Chiou SH, Huang CY, Wang MC, Yan J (2017) Joint scale-change models for recurrent events and failure time. J Am Stat Assoc 112:794–805

    MathSciNet  Google Scholar 

  • Ye Y, Kalbfleisch JD, Schaubel DE (2007) Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63:78–87

    MathSciNet  MATH  Google Scholar 

  • Yu H, Cheng YJ, Wang CY (2018) Methods for multivariate recurrent event data with measurement error and informative censoring. Biometrics 74:966–976

    MathSciNet  MATH  Google Scholar 

  • Zeng D, Lin D (2007) Semiparametric transformation models with random effects for recurrent events. J Am Stat Assoc 102:167–180

    MathSciNet  MATH  Google Scholar 

  • Zeng D, Lin D (2009) Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events. Biometrics 65:746–752

    MathSciNet  MATH  Google Scholar 

  • Zeng D, Cai J (2010) A semiparametric additive rate model for recurrent events with an informative terminal event. Biometrika 97:699–712

    MathSciNet  MATH  Google Scholar 

  • Zhao X, Zhou J, Sun L (2011) Semiparametric transformation models with time-varying coefficients for recurrent and terminal events. Biometrics 67:404–414

    MathSciNet  MATH  Google Scholar 

  • Zhao H, Zhou J, Sun L (2013) A marginal additive rates model for recurrent event data with a terminal event. Commun Stat Theory Methods 42:2567–2583

    MathSciNet  MATH  Google Scholar 

  • Zhu L, Sun J, Tong X, Srivastava DK (2010) Regression analysis of multivariate recurrent event data with a dependent terminal event. Lifetime Data Anal 16:478–490

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 11771431, 11690015 and 11671310) and Key Laboratory of RCSDS, CAS (No. 2008DP173182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuquan Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of theorems

Appendix: Proofs of theorems

In order to study the asymptotic properties of the proposed estimators, we impose the following regularity conditions.

  1. (C1)

    \(\{N_i(\cdot ),\ T_i,\ \delta _i,\ Z_i(\cdot )\}\) are independent and identically distributed.

  2. (C2)

    \(P\{T_i \ge \tau \}>0\), and \(E\{N_i(\tau )\} < \infty .\)

  3. (C3)

    \(Z_i(t)\) is almost surely of bounded variation on \([0, \tau ]\).

  4. (C4)

    The matrix A is nonsingular, where

    $$\begin{aligned} A=E\left[ \int _0^\tau I(C_i \ge t)\left\{ Z_i(t)-{\bar{z}}(t)\right\} ^{\otimes 2}dt \right] , \end{aligned}$$

    \({\bar{z}}(t)\) is the limit of \({\bar{Z}}(t)\), and

    $$\begin{aligned} {\bar{Z}}(t)= \frac{\sum _{i=1}^{n}I(C_i\ge t)Z_i(t)}{\sum _{i=1}^{n}I(C_i\ge t)}. \end{aligned}$$

Proof of Theorem 1

Using the uniform strong law of large numbers (Pollard 1990) and the uniform consistency of \({{\widehat{\gamma }}}\) and \({{\widehat{\Lambda }}}_0^C(\cdot )\) under model (6) (Andersen and Gill 1982), it follows from that \({\bar{Z}}^C(t)\) converges almost surely to \({\bar{z}}(t)\) uniformly in \(t\in [0,\tau ]\), and almost surely,

$$\begin{aligned} {\widehat{A}} = \frac{1}{n}\sum _{i=1}^n \int _0^\tau {\widehat{W}}_i(t)\{Z_i(t)-{\bar{Z}}^C(t)\}^{\otimes 2}dt \longrightarrow A. \end{aligned}$$
(A.1)

Note that \( M_i(t;\, \theta _0) = N_i(t)- \int _0^t I(C_i\ge u)\left\{ d\mu _0(u)+\theta _0'Z_i(u)du\right\} \) is a zero-mean stochastic process under model (2). In a similar manner, we have that almost surely,

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n \int _0^\tau \left\{ Z_i(t)-{\bar{Z}}^C(t)\right\} \left[ dN_i(t)-{\widehat{W}}_i(t)\left\{ d\mu _0(t)+\theta _0'Z_i(t)dt\right\} \right] \longrightarrow 0.\nonumber \\ \end{aligned}$$
(A.2)

Thus, it follows from (A.1) and (A.2) that almost surely,

$$\begin{aligned} {\widehat{\theta }}-\theta _0&= {\widehat{A}}^{-1} \left( \frac{1}{n}\sum _{i=1}^n \int _0^\tau \left\{ Z_i(t)-{\bar{Z}}^C(t)\right\} \left[ dN_i(t)-{\widehat{W}}_i(t)\left\{ d\mu _0(t)+\theta _0'Z_i(t)dt\right\} \right] \right) \\&\longrightarrow 0. \end{aligned}$$

That is, \({{\widehat{\theta }}}\) is strongly consistent.

To prove the asymptotic normality of \({{\widehat{\theta }}}\), define

$$\begin{aligned} M_i(t) = N_i(t)- \int _0^t {W}_i(u)\left\{ d\mu _0(u)+\theta _0'Z_i(u)du\right\} , \end{aligned}$$

where

$$\begin{aligned} W_i(t)=\frac{I(C_i \ge D_i \wedge t)\,S^{C}(t|Z_i)}{S^{C}(T_i\wedge t|Z_i)}. \end{aligned}$$

Write

$$\begin{aligned} n^{1/2}({\widehat{\theta }}-\theta _0) =&A^{-1}n^{-1/2} \bigg [ \sum _{i=1}^n \int _0^\tau \left\{ Z_i(t)-{\bar{Z}}^C(t)\right\} dM_i(t)\nonumber \\&+ \sum _{i=1}^n \int _0^\tau \left\{ Z_i(t)-{\bar{Z}}^C(t)\right\} I(C_i \ge D_i\wedge t) \left\{ \frac{S^C(t|Z_i)}{S^C(T_i\wedge t|Z_i)} -\frac{{\widehat{S}}^C(t|Z_i)}{{\widehat{S}}^C(T_i\wedge t|Z_i)}\right\} \nonumber \\&\times \left\{ d\mu _0(t)+\theta _0'Z_i(t)dt\right\} \bigg ]+o_p(1). \end{aligned}$$
(A.3)

Note that \({\widehat{\Lambda }}^C_{0}(\cdot )\) is \(n^{1/2}\)-consistent. Applying the functional delta method (van der Vaart and Wellner 1996, Theorem 3.9.4, p. 374) and the martingale central limit theorem (Fleming and Harrington 1991, p. 227), we obtain

$$\begin{aligned}&n^{1/2} \left\{ \frac{S^C(t|Z_i)}{S^C(T_i\wedge t|Z_i)} - \frac{{\widehat{S}}^C(t|Z_i)}{{\widehat{S}}^C(T_i\wedge t|Z_i)} \right\} \nonumber \\&\quad = \frac{I(T_i < t)S^C(t|Z_i)}{S^C(T_i\wedge t|Z_i)} \bigg [ n^{-1/2}\sum _{j=1}^n \int _{T_i}^t \frac{\exp \{\gamma _0'Z_i(u)\}dM_j^C(u)}{s^{(0)}(u;\gamma _0)} \nonumber \\&\qquad +H(t;T_i, Z_i)'\,\Omega ^{-1}\, n^{-1/2}\sum _{j=1}^n \int _0^\tau \bigg \{Z_j(u) -\frac{s^{(1)}(u;\gamma _0)}{s^{(0)}(u;\gamma _0)}\bigg \} dM_j^C(u) \bigg ] +o_p(1), \end{aligned}$$
(A.4)

where

$$\begin{aligned} H(t;T_i, Z_i) = \int _{T_i}^t \exp \{\gamma _0'Z_i(u)\} \left\{ Z_i(u)-\frac{s^{(1)}(u;\gamma _0)}{s^{(0)}(u;\gamma _0)}\right\} d\Lambda ^C_0(u), \end{aligned}$$

and \(s^{(d)}(t;\gamma )\) and \(\Omega \) are the limits of \(S^{(d)}(t;\gamma )\) and \({{\widehat{\Omega }}}\) is defined in Sect. 3, respectively.

Plugging (A.4) into (A.3) and interchanging integrals, we get

$$\begin{aligned} n^{1/2}\{{{\widehat{\theta }}}-\theta _0\} =&A^{-1}\,n^{-1/2}\sum _{i=1}^n \bigg [ \int _0^\tau \left\{ Z_i(t)-{\bar{Z}}^C(t)\right\} dM_i(t) \nonumber \\&+ \int _0^\tau \left\{ {\widetilde{B}} \bigg (Z_i(t)-\frac{s^{(1)}(t;\gamma _0)}{s^{(0)}(t;\gamma _0)}\bigg ) + \frac{{{\widetilde{F}}}(t)}{s^{(0)}(t;\gamma _0)}\right\} dM_i^C(t) \bigg ] +o_p(1), \end{aligned}$$
(A.5)

where

$$\begin{aligned} {\widetilde{B}} = \frac{1}{n}\sum _{i=1}^n \int _0^\tau \left\{ Z_i(t)-{\bar{Z}}^C(t)\right\} H(t;T_i, Z_i)'\,\Omega ^{-1}I(T_i < t)W_i(t) \left\{ d\mu _0(t)+\theta _0'Z_i(t)dt\right\} , \end{aligned}$$

and

$$\begin{aligned} {\widetilde{F}}(t)= & {} \frac{1}{n}\sum _{i=1}^n \int _0^\tau \left\{ Z_i(u)-{\bar{Z}}^C(u)\right\} \\&\quad \exp \left\{ \gamma _0'Z_i(t)\right\} I(T_i < t \le u)W_i(u) \left\{ d\mu _0(u)+\theta _0'Z_i(u)du\right\} . \end{aligned}$$

Let B and F(t) to be the limits of \({\widetilde{B}}\) and \({\widetilde{F}}(t)\), respectively. In view of (A.5), by the uniform strong law of large numbers, we have

$$\begin{aligned} n^{1/2}\{{{\widehat{\theta }}}-\theta _0\} =A^{-1}n^{-1/2}\sum _{i=1}^n \{\xi _i+\eta _i\}+o_p(1), \end{aligned}$$

where

$$\begin{aligned} \xi _i = \int _0^\tau \left\{ Z_i-{{\bar{z}}}(t)\right\} dM_i(t), \end{aligned}$$

and

$$\begin{aligned} \eta _i =\int _0^\tau \left[ B\left\{ Z_i(t)-\frac{s^{(1)}(t;\gamma _0)}{s^{(0)}(t;\gamma _0)}\right\} + \frac{F(t)}{s^{(0)}(t;\gamma _0)} \right] dM_i^C(t). \end{aligned}$$

It follows from the multivariate central limit theorem that \(n^{1/2}({{\widehat{\theta }}}-\theta _0)\) converges in distribution to a zero-mean normal random vector with a covariance matrix \(A^{-1}\Sigma A^{-1}\), where \(\Sigma =E\{\xi _1+\eta _1\}^{\otimes 2}\). By replacing all the unknown quantities in A and \(\Sigma \) with their empirical counterparts, the variance matrix can be consistently estimated by \({{\widehat{A}}}^{-1}{\widehat{\Sigma }}\widehat{A}^{-1}\) defined in Theorem 1. \(\square \)

Proof of Theorem 2

For the consistency of \({{\widehat{\mu }}}_0(t)\), we have

$$\begin{aligned} {{\widehat{\mu }}}_0(t)-\mu _0(t) = \left\{ {\widehat{\mu }}_0(t)-{\widehat{\mu }}_0(t;\theta _0)\right\} + \left\{ {\widehat{\mu }}_0(t;\theta _0)-\mu _0(t)\right\} , \end{aligned}$$
(A.6)

where

$$\begin{aligned} {\widehat{\mu }}_0(t; \theta _0) =\int _0^t \frac{\sum _{i=1}^n \left\{ dN_i(u)-{\widehat{W}}_i(u)\,\theta _0'Z_i(u)du\right\} }{\sum _{i=1}^n {\widehat{W}}_i(u)}. \end{aligned}$$

Following the similar techniques in the proof of Theorem 1 and some algebraic manipulations, we obtain

$$\begin{aligned} {\widehat{\mu }}_0(t;{\widehat{\theta }})-{\widehat{\mu }}_0(t;\theta _0) = -\left[ \int _0^t {{\bar{z}}}(u)'du \right] \, A^{-1}\, \left[ \frac{1}{n}\sum _{i=1}^n \{\xi _i+\eta _i\} \right] +o_p(1),\nonumber \\ \end{aligned}$$
(A.7)

and

$$\begin{aligned} {\widehat{\mu }}_0(t;\theta _0)-\mu _0(t) =&\frac{1}{n}\sum _{i=1}^n \bigg [ \int _0^t \frac{dM_i(u)}{n^{-1}\sum _{j=1}^n{\widehat{W}}_i(u)} \nonumber \\&+ \int _0^t \frac{I(C_i \ge D_i\wedge u)}{n^{-1}\sum _{j=1}^n{\widehat{W}}_i(u)} \bigg \{\frac{S^C(u|Z_i)}{S^C(T_i\wedge u|Z_i)} \bigg . \bigg . \nonumber \\&\quad - \bigg . \bigg . \frac{{\widehat{S}}^C(u|Z_i)}{{\widehat{S}}^C(T_i\wedge u|Z_i)}\bigg \} \left\{ d\mu _0(u)+\theta _0'Z_i(u)du\right\} \bigg ]. \end{aligned}$$
(A.8)

Due to (A.6), (A.7) and (A.8), applying the uniform strong law of large numbers and the strong consistency of \({{\widehat{\theta }}}\), we can show that \({{\widehat{\mu }}}_0(t)\) converges almost surely to \(\mu _0(t)\) uniformly in \(t \in [0, \tau ]\).

Furthermore, using the functional central limit theorem (Pollard 1990) and the fact that \(M_i^C(t)\) (\(i=1 ,\ldots , n\)) are martingales, we have

$$\begin{aligned} n^{1/2}\left\{ {{\widehat{\mu }}}_0(t)-\mu _0(t)\right\} =n^{-1/2}\sum _{i=1}^n \phi _i(t)+o_p(1), \end{aligned}$$

where

$$\begin{aligned} \phi _i(t) =&\int _0^t \frac{dM_i(u)}{E\{I(C_i \ge u)\}}+\int _0^\tau \left[ P_1(t)\left\{ Z_i(u)-\frac{s^{(1)}(u;\gamma _0)}{s^{(0)}(u;\gamma _0)}\right\} +\frac{P_2(u,t)}{s^{(0)}(u;\gamma _0)} \right] dM_i^C(u)\\&-\int _0^t {\bar{z}}(u)'duA^{-1}\{\xi _i+\eta _i\}, \end{aligned}$$

with \(P_1(t)\) and \(P_2(u,t)\) being the limits of \({{\widehat{P}}}_1(t)\) and \({{\widehat{P}}}_2(u,t)\) given in Theorem 2, respectively. Because \(\phi _i\) (\(i=1 ,\ldots , n\)) are independent zero-mean random variables for each t, the multivariate central limit theorem implies that \(n^{1/2}\left\{ {{\widehat{\mu }}}_0(t)-\mu _0(t)\right\} \) converges in finite-dimensional distribution to a zero-mean Gaussian process. Since \(\phi _i\) can be written as sums or products of monotone functions of t and are thus tight (van der Vaart and Wellner 1996). Therefore, \(n^{1/2}\left\{ {{\widehat{\mu }}}_0(t)-\mu _0(t)\right\} \) is tight and converges weakly to a zero-mean Gaussian process. The covariance function for \(n^{1/2}\left\{ {{\widehat{\mu }}}_0(t)-\mu _0(t)\right\} \) at (ts) is given by \(E\{\phi _1(t)\phi _1(s)\}\), which can be consistently estimated by \({\widehat{\Phi }}(t,s)\) defined in Theorem 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Ding, J. & Sun, L. A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events. Lifetime Data Anal 26, 471–492 (2020). https://doi.org/10.1007/s10985-019-09486-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-019-09486-w

Keywords

Navigation