Skip to main content

Advertisement

Log in

Floral resource maps: a tool to explain flower-visiting insect abundance at multiple spatial scales

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Flower-visiting insects depend on floral resource availability from both cultivated and semi-natural habitats in agricultural landscapes. Landscape studies exploring insect abundance mainly focus on land cover maps without considering plant species within. Highlighting the functional role of landscapes through the potential floral resources they provide is an overlooked innovative approach.

Objectives

We aimed to identify traits of floral communities that are important, across several spatial scales, for explaining the abundance of flower-visiting insects. Mapping and quantifying potential floral resources according to their attractivity, accessibility and profitability in both crop and non-crop habitats was performed to gain insights into flower-vising insect requirements.

Methods

We translated land-cover maps of 39 landscapes of 250 m, 500 m and 1000 m radius into potential floral resource maps, using pre-existing vegetation surveys and floral traits databases. In the centres of the landscapes, the abundance of flower-visiting insect groups (domestic and wild bees, bumblebees and hoverflies) were recorded in organic winter cereal fields. We then fitted Generalized Linear Models (GLMs) to investigate the effects of flower trait variables (pre-selected with conditional random forests) at both field and landscape scales on the abundance of each flower-visiting insect group.

Results

Floral resource maps explained the abundances of flower-visiting insect groups. Small wild bees (< 1 cm) responded positively to the relative amount of attractive and accessible floral resources at 250 m. The abundance of domestic bees and bumblebees was positively correlated with the relative amount of high nectar producing plants at 1000 m. The abundance of hoverflies was positively influenced by the relative amount of actinomorphic flowers (i.e., those with radial symmetry), at 1000 m.

Conclusion

Resource maps could explain flower-visiting insect abundances, identify which category of floral resources organisms require, and determine in which habitat types these resources prevail. These results open a new research area related to managing the environment by optimising floral resources for flower-visiting insect conservation and pollination maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ammann L, Bosem-Baillod A, Eckerter PW, Entling MH, Albrecht M, Herzog F (2022) Comparing floral resource maps and land cover maps to predict predators and aphid suppression on field bean. Landsc Ecol 37(2):431–441

    Article  PubMed  Google Scholar 

  • ArcGIS [GIS software] (2020) Version 10.8.1. Environmental Systems Research Institute, Inc., Redlands

  • Arnold SE, Le Comber CS, Chittka L (2009) Flower color phenology in European grassland and woodland habitats, through the eyes of pollinators. Isr J Plant Sci 57(3):211–230

    Article  Google Scholar 

  • Balfour NJ, Ratnieks FL (2022) The disproportionate value of ‘weeds’ to pollinators and biodiversity. J Appl Ecol 59:1209–1218

    Article  Google Scholar 

  • Balzan MV, Bocci G, Moonen AC (2014) Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J Insect Conserv 18:713–728

    Article  Google Scholar 

  • Bartoń K (2020) MuMIn: multi-model inference. R package version 1.43.17

  • Batáry P, Dicks LV, Kleijn D, Sutherland WJ (2015) The role of agri-environment schemes in conservation and environmental management. Conserv Biol 29(4):1006–1016

    Article  PubMed  PubMed Central  Google Scholar 

  • Baude M, Kunin WE, Memmott J (2015) Nectar sugar values of common British plant species [AgriLand]. NERC Environmental Information Data Centre

  • Bertrand C, Burel F, Baudry J (2016) Spatial and temporal heterogeneity of the crop mosaic influences carabid beetles in agricultural landscapes. Landsc Ecol 31(2):451–466

    Article  Google Scholar 

  • Bradter U, Kunin WE, Altringham JD, Thom TJ, Benton TG (2013) Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol Evol 4(2):167–174

    Article  Google Scholar 

  • Bretagnolle V, Gaba S (2015) Weeds for bees? A review. Agron Sustain Dev 35(3):891–909

    Article  Google Scholar 

  • Burel F, Baudry J (1990) Structural dynamic of a hedgerow network landscape in Brittany France. Landsc Ecol 4(4):197–210

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach, 2nd edn. Springer-Verlag, New York

  • Cavigliasso P, Phifer CC, Knowlton JL, Licata JA, Flaspohler DJ, Webster CR, Chacoff NP (2022) Influence of landscape composition on wild bee communities: effects of functional landscape heterogeneity. Agric Ecosyst Environ 340:108150

    Article  Google Scholar 

  • Cole LJ, Baddeley JA, Robertson D, Topp CFE, Walker RL, Watson CA (2022) Supporting wild pollinators in agricultural landscapes through targeted legume mixtures. Agric Ecosyst Environ 323:107648

    Article  PubMed  PubMed Central  Google Scholar 

  • Crochard L, Julliard R, Gaba S, Bretagnolle V, Baude M, Fontaine C (2022) Weeds from non-flowering crops as potential contributors to oilseed rape pollination. Agric Ecosyst Environ 336:108026

    Article  Google Scholar 

  • Dafni A, Potts SG (2004) The role of flower inclination, depth, and height in the preferences of a pollinating beetle (Coleoptera: Glaphyridae). J Insect Behav 17(6):823–834

    Article  Google Scholar 

  • Danner N, Keller A, Härtel S, Steffan-Dewenter I (2017) Honey bee foraging ecology: season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE 12(8):e0183716

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102(2):417–426

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve Butterflies. Biodivers Conserv 15(6):1943–1966

    Article  Google Scholar 

  • Diekötter T, Peter F, Jauker B, Wolters V, Jauker F (2014) Mass-flowering crops increase richness of cavity-nesting bees and wasps in modern agro-ecosystems. Gcb Bioenergy 6(3):219–226

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Eckerter PW, Albus L, Natarajan S, Albrecht M, Ammann L, Gobet E, Herzog F, Tinner W, Entling M (2020) Using temporally resolved floral resource maps to explain bumblebee colony performance in agricultural landscapes. Agronomy 10(12):1993

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel F, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112

    Article  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339(6127):1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71(5):757–764

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24(4):699–711

    Article  CAS  PubMed  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1(2):143–156

    Article  Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15(3):651–674

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27(7):929–941

    Article  Google Scholar 

  • Jeavons E, van Baaren J, Le Lann C (2020) Resource partitioning among a pollinator guild: a case study of monospecific flower crops under high honeybee pressure. Acta Oecol 104:103527

    Article  Google Scholar 

  • Julve P (1998) Baseflor. Index botanique, écologique et chorologique de la flore de France. Version : “20 novembre 2018”

  • Kattge EJ, Diaz S, Lavorel S et al (2011) TRY – a global database of plant traits. Glob Change Biol 17(9):2905–2935

    Article  Google Scholar 

  • Kleijn D, Van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl Ecol 7(3):201–214

    Article  Google Scholar 

  • Knight ME, Martin AP, Bishop S, Hale RJ, Sanderson RA, Goulson D (2005) An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol Ecol 14(6):1811–1820

    Article  CAS  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0–12

  • Lonsdorf E, Kremen C, Ricketts T, Winfree R, Williams N, Greenleaf S (2009) Modelling pollination services across agricultural landscapes. Ann Bot 103(9):1589–1600

    Article  PubMed  PubMed Central  Google Scholar 

  • Lunau K, Papiorek S, Eltz T, Sazima M (2011) Avoidance of achromatic colours by bees provides a private niche for hummingbirds. J Exp Biol 214(9):1607–1612

    Article  PubMed  Google Scholar 

  • Mallinger RE, Prasifka JR (2017) Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars. J Appl Entomol 141(7):561–573

    Article  CAS  Google Scholar 

  • Morandin LA, Winston ML, Abbott VA, Franklin MT (2007) Can pastureland increase wild bee abundance in agriculturally intense areas? Basic Appl Ecol 8:117–124

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, Hoboken

    Google Scholar 

  • Öckinger E, Lindborg R, Sjödin NE, Bommarco R (2012) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 35(3):259–267

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120(3):321–326

    Article  Google Scholar 

  • Papiorek S, Junker RR, Alves-dos-Santos I, Melo GA, Amaral-Neto LP, Sazima M, Wolowski M, Freitas L, Lunau K (2016) Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns. Plant Biol 18(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84(10):2628–2642

    Article  Google Scholar 

  • Proesmans W, Bonte D, Smagghe G, Meeus I, Verheyen K (2019) Importance of forest fragments as pollinator habitat varies with season and guild. Basic Appl Ecol 34:95–107

    Article  Google Scholar 

  • Puech C, Baudry J, Joannon A, Poggi S, Aviron S (2014) Organic vs. conventional farming dichotomy: does it make sense for natural enemies? Agric Ecosyst Environ 194:48–57

    Article  Google Scholar 

  • Puech C, Poggi S, Baudry J, Aviron S (2015) Do farming practices affect natural enemies at the landscape scale? Landsc Ecol 30(1):125–140

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Requier F, Odoux J-F, Tamic T, Moreau N, Henry M, Decourtye A, Bretagnolle V (2015) Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol Appl 25(4):881–890

    Article  PubMed  Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11(5):499–515

    Article  PubMed  Google Scholar 

  • Ricou C, Schneller C, Amiaud B, Plantureux S, Bockstaller C (2014) A vegetation-based indicator to assess the pollination value of field margin flora. Ecol Indic 45:320–331

    Article  Google Scholar 

  • Rivers-Moore J, Andrieu E, Vialatte A, Ouin A (2020) Wooded semi-natural habitats complement permanent grasslands in supporting wild bee diversity in agricultural landscapes. InSects 11(11):812

    Article  PubMed  PubMed Central  Google Scholar 

  • Rollin O, Bretagnolle V, Decourtye A, Aptel J, Michel N, Vaissière BE, Henry M (2013) Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agric Ecosyst Environ 179:78–86

    Article  Google Scholar 

  • Rollin O, Pérez-Méndez N, Bretagnolle V, Henry M (2019) Preserving habitat quality at local and landscape scales increases wild bee diversity in intensive farming systems. Agric Ecosyst Environ 275:73–80

    Article  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci 98(7):3898–4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effets of landscape context on three pollinator guilds. Ecology 83(5):1421–1432

    Article  Google Scholar 

  • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8(1):25

    Article  Google Scholar 

  • Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinform 9(1):307

    Article  Google Scholar 

  • Sutherland JP, Sullivan MS, Poppy GM (1999) The influence of floral character on the foraging behaviour of the hoverfly. Episyrphus Balteatus Entomologia Experimentalis Et Applicata 93(2):157–164

    Google Scholar 

  • Timberlake TP, Vaughan IP, Memmott J (2019) Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. J Appl Ecol 56(7):1585–1596

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20(1):171–197

    Article  Google Scholar 

  • Twerski A, Albrecht H, Fründ J, Moosner M, Fischer C (2022) Effects of rare arable plants on flower-visiting wild bees in agricultural fields. Agric Ecosyst Environ 323:107685

    Article  Google Scholar 

  • van Rijn PCJ, Wäckers FL (2016) Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control. J Appl Ecol 53(3):925–933

    Article  Google Scholar 

  • Vanreusel W, Van Dyck H (2007) When functional habitat does not match vegetation types: a resource-based approach to map butterfly habitat. Biol Conserv 135(2):202–211

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vialatte A, Tsafack N, Hassan DA, Duflot R, Plantegenest M, Ouin A, Villenave-Chasset J, Ernoult A (2017) Landscape potential for pollen provisioning for beneficial insects favours biological control in crop fields. Landsc Ecol 32(3):465–480

    Article  Google Scholar 

  • Welti EAR, Joern A (2018) Fire and grazing modulate the structure and resistance of plant–floral visitor networks in a tallgrass prairie. Oecologia 186(2):517–528

    Article  PubMed  Google Scholar 

  • Williams NM, Kremen C (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl 17(3):910–921

    Article  PubMed  Google Scholar 

  • Williams NM, Regetz J, Kremen C (2012) Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93(5):1049–1058

    Article  PubMed  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90(8):2068–2076

    Article  PubMed  Google Scholar 

  • Zhang D (2022) rsq: R-squared and related measures. R package version 2.5

Download references

Acknowledgements

We warmly thank the farmers who gave permission to perform flower-visiting insects’ surveys on their farms. We also thank Gérard Savary, Arnaud Maillard and Jean-Luc Roger for their help in collecting land cover information. The study was supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database are hosted, developed and maintained by J. Kattge and G. Bönisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is currently supported by DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-­‐Jena-­‐Leipzig. We also thank Rebecca Spake and the reviewers for their constructive comments on the manuscript.

Funding

This work was supported by the Zone Atelier Armorique. Audrey Alignier has received research support for the FLORAG project (2020) and Nathan Lenestour’s internship, and Stéphanie Aviron has received research support for the DIVAG project (2019).

Author information

Authors and Affiliations

Authors

Contributions

AA, SA, CLL and JvB contributed to the study conception and design. Material preparation and data collection were performed by NL, EJ, LU and CR. Data analysis was performed by NL and AA. The first draft of the manuscript was written by AA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Audrey Alignier.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

All authors gave their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 851 kb)

Supplementary file2 (XLSX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alignier, A., Lenestour, N., Jeavons, E. et al. Floral resource maps: a tool to explain flower-visiting insect abundance at multiple spatial scales. Landsc Ecol 38, 1511–1525 (2023). https://doi.org/10.1007/s10980-023-01643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01643-9

Keywords

Navigation