Skip to main content

Advertisement

Log in

Assessing the influence of ecological interaction patterns among habitat types on species distribution: studying the Iberian lynx (Lynx pardinus Temminck 1827) in central Spain

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Species distribution models (SDMs) usually describe the landscape through single landcover types as explicative and independent variables. However, species distribution responds to ecological processes that are represented in spatial patterns of landcovers, which are not usually considered in SDMs.

Objectives

From the hypothesis that Iberian lynx occurrence will depend on landscape functioning and that spatial organisation of landcovers is a reliable indicator of landscape functionality, we built a SDM based on landscape structure, to: (i) assess the relevance that spatial organisation of landcovers has for SDMs; (ii) describe the suitable landscape for the presence/conservation of the Iberian lynx.

Methods

Spatial organisation of landscape is identified by recognising landscape mosaics, which are sets of patches with a similar pattern of boundaries. We identified landscape mosaics within western area of the province of Madrid. Then, we used field-collected lynx scats to test if species’ preferences are related to landscape mosaics.

Results

The species shows its preference for two out of eight identified mosaics. It shows preference for mosaics with low human-modified holm oak forests, but it does not show rejection of traditional land-uses such as pasture or non-intensive agriculture. The relevance of watercourses was also shown, since two of four mosaics with characteristic riparian vegetation prove to be relevant in the model.

Conclusions

As landscape includes spatial interactions (boundaries) among landcovers it is a more holistic descriptor than single landcovers. This contributes to increase SDMs performance and usefulness for designing more accurate conservation actions, compared to those based on single landcover composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alda F, Inogés J, Alcaraz L, Oria J, Aranda A, Doadrio I (2008) Looking for the Iberian lynx in central Spain: a needle in a haystack? Anim Conserv 11:297–305

    Google Scholar 

  • Aldama JJ (1996) Actuaciones para la conservación del lince ibérico en la C.A.M. LIFE Project. Unpublished technical report. Madrid

  • Alfaya P, Casanovas JG, Lobón-Rovira J, Matallanas B, Cruz A, Arana P, Alonso G (2019) Using MaxEnt algorithm to assess habitat suitability of a potential Iberian Lynx population in central Iberian Peninsula. Community Ecol 20(3):266–267

    Google Scholar 

  • Arnaiz-Schmitz C, Díaz P, Ruiz-Labourdette D, Herrero-Jáuregui C, Molina M, Montes C, Schmitz MF (2018) Modelling of socio-ecological connectivity The rural-urban network in the surroundings of Madrid (Central Spain). Urban Ecosyst 21(6):1199–1212

    Google Scholar 

  • Barea-Azcón JM, Virgós E, Ballesteros-Duperón E, Moleón M, Chirosa M (2007) Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodivers Conserv 16:1213–1230

    Google Scholar 

  • Beasley TM, Schumacker RE (1995) Multiple regression approach to analyzing contingency tables: post hoc and planned comparison procedures. J Exp Educ 64(1):79–93

    Google Scholar 

  • Bernáldez FG (1981) Ecología y Paisaje. Blume, Madrid

    Google Scholar 

  • Blanco JC, Barrios L, González-Oreja JA, Fonzález-Vázquez JG, Garza V, Crema G et al (1997) Inventario, situación y plan de recuperación del Lince Ibérico en Extremadura. Consejería de Medio Ambiente, Urbanismo y Turismo, Junta de Extremadura

    Google Scholar 

  • Boscaje SL (2000) Actuaciones para la conservación de las poblaciones de lince ibérico Lynx pardina en la C.A.M. Unpublished technical report. Madrid

  • Boshoff AF, Kerley GI (2010) Historical mammal distribution data: how reliable are written records? S Afr J Sci 106(1–2):26–33

    Google Scholar 

  • Brotons L, Thuiller W, Araújo MB, Hirzel H (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448

    Google Scholar 

  • Calvete C, Estrada R, Angulo E, Cabezas-Ruiz S (2004) Habitat factors related to wild rabbit conservation in an agricultural landscape. Lands Ecol 19:531–542

    Google Scholar 

  • Calzada J, Muñoz P, Sánchez A, Palacios MJ, Dávila C, Simón MA, et al (2007) estrategia para la conservación del Lince Ibérico (Lynx pardinus). Comisión Nacional de Protección de la Naturaleza, Madrid, p 44

  • Cantwell MD, Forman RTT (1993) Landscape graphs: ecological modeling with graph theory to detect configurations common to diverse landscape. Lands Ecol 8(4):239–255

    Google Scholar 

  • Cayuela L (2004) Habitat evaluation for the Iberian wolf Canis lupus in Picos de Europa National Park Spain. Appl Geogr 24(3):199–215

    Google Scholar 

  • Chávez C, De la Torre A, Bárcenas H, Medellín RA, Zarza H, Ceballos G (2013) Manual de fototrampeo para estudio de fauna silvestre. Alianza WWF-Telcel, Universidad Nacional Autónoma de México, México, El jaguar en México como estudio de caso

    Google Scholar 

  • Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences of predictive distribution model performance. Ecol Model 210:478–486

    Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8(1):2–14

    Google Scholar 

  • Cruz A, Matallanas B, Lobón-Rovira J, Casanovas JG, Alonso G, Arana P (2019) Double specific nested PCR and diagnostic SNP assay for species identification in lynx fecal critical samples. Conserv Genet Resour 11:173–175

    Google Scholar 

  • De Miguel JM, Rodriguez MA, Gómez-Sal A (1997) Determination of animal behavior-environment relationships by correspondence analysis. J Range Manage 50:85–93

    Google Scholar 

  • Di Bitetti MS (2012) ¿Qué es el hábitat? Ambigüedad en el uso de jerga técnica. Ecol Austral 22:137–143

    Google Scholar 

  • Dickman CR, Doncaster CP (1984) Responses of small mammals to Red fox (Vulpes vulpes) odour. J Zool 204(4):521–531

    Google Scholar 

  • Eggermann J, da Costa GF, Guerra AM, Kirchner WH, Petrucci-Fonseca F (2011) Presence of Iberian wolf (Canis lupus signatus) in relation to land cover, livestock and human influence in Portugal. Mamm Biol 76(2):217–221

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Google Scholar 

  • Etter A (1991) Introducción a la Ecología del Paisaje. Un Marco de Integración para los Levantamientos Ecológicos, Bogotá, Colombia

    Google Scholar 

  • Ferrier S, Watson G (1997) An evaluation of the effectiveness of environmental surrogates and modeling techniques in predicting the distribution of biological diversity. Environment Australia, Canberra, Australia

    Google Scholar 

  • Fordham DA, Akçakaya HR, Brook BW, Rodríguez A, Alves PC, Civantos E, Triviño M, Watts MJ, Araújo MB (2013) Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat Clim Change 3:899–903

    Google Scholar 

  • Forman RTT (1999) Land mosaics: the ecology of landscapes and regions, First published, 1995. Cambridge University Press, Cambridge

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19(4):474–499

    Google Scholar 

  • Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Fundación CBD-Hábitat (2006) Análisis de la presencia de otros carnívoros en relación al lince ibérico (Lynx pardinus Temminck, 1827) en Sierra Morena oriental. Conservación del lince ibérico en Sierra Morena oriental. Proyecto LIFE/02/E/NAT/8609 ‘Recuperación de las poblaciones de lince ibérico en Andalucía’. Unpublished technical report, Madrid.

  • García P, Pérez E (2016) Mapping of soil sealing by vegetation indexes and built-up index: a case of study in Madrid (Spain). Geoderma 268:100–107

    Google Scholar 

  • Garrote G, de Ayala RP (2015) Assessing unverified observation data used for estimating Iberian lynx distribution. Eur J Wildl Res 61(5):801–806

    Google Scholar 

  • Garrote G, de Ayala RP, Tellería JL (2014) A comparison of scats counts and camera-trapping as means of assessing Iberian lynx abundance. Eur J Wildl Res 60:885–889

    Google Scholar 

  • Garrote G, Fernández-López J, Rojas E, López G, Simón MA (2020) Planning the península-wide recovery of the Iberian lynx: identification of favourable habitat areas. Mammalia. https://doi.org/10.1515/mammalia-2019-0052

    Article  Google Scholar 

  • Gastón A, Blázquez-Cabrera S, Ciudad C, Mateo-Sánches MC, Simón MA, Saura S (2019) The role of forest canopy cover in habitat selection: insights from the Iberian Lynx. Eur J Wildl Res 65:30

    Google Scholar 

  • Gastón A, Blázquez-Cabrera S, Garrote G, Mateo-Sánchez MC, Beier P, Simón MA, Saura S (2016) Response to agriculture by a woodland species depends on cover type and behavioural state: insights from resident and dispersing Iberian lynx. J Appl Ecol 53(3):814–824

    Google Scholar 

  • Gelman A and Su Y (2018) arm: Data Analysis using regression and multilevel/hierarchical models, R package version 1.10–1. https://CRAN.R-project.org/package=arm.

  • Glenz G, Massolo A, Kuonen D, Schlaepfer R (2001) A wolf habitat suitability prediction study in Valais (Switzerland). Landsc Urban Plan 55:55–65

    Google Scholar 

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    PubMed  Google Scholar 

  • Grilo C, Moço G, Cândido AT, Alexandre AS, Pretucci-Fonseca F (2002) Challenges for the recovery of the Iberian wolf in the Douro river south region. Rev Biol 20:121–133

    Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 310(5750):987–991

    PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Google Scholar 

  • Guzmán JN, García FJ, Garrote G, de Ayala RP, Iglesias C (2005) El lince ibérico (Lynx pardinus) en España y Portugal. Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Guzmán JN, García FJ, Garrote G, de Ayala RP, Iglesias MC (2004) El lince ibérico (Lynx pardinus) en España y Portugal. Censo-diagnóstico de sus poblaciones, DGCN, Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Haberman SJ (1973) The analysis of residuals in cross-classified tables. Biometrics 29(1):205–220

    Google Scholar 

  • Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression and survival analysis. Springer, New York

    Google Scholar 

  • Hortal J, Roura-Pascual N, Sanders NJ, Rahbek C (2010) Understanding (insect) species distributions across spatial scales. Ecography 33(1):51–53

    Google Scholar 

  • IDEM (2019) Mapa de Vegetación y Usos del Suelo de la Comunidad de Madrid. Actualized at: February 2019. Consejería de Medio Ambiente y Ordenación del Territorio. Comunidad de Madrid. https://idem.madrid.org.

  • Iglesias A, España AJ (2010) Rastros y huellas de carnívoros ibéricos. Ediciones Jaguar, Madrid

    Google Scholar 

  • Jamil T, Ly A, Morey RD, Love J, Marsman M, Wagenmakers E (2017) Default “Gunel and Dickey” Bayes factors for contingency tables. Behav Res Methods 49(2):638–652

    PubMed  Google Scholar 

  • Janervich CS, Talbert M, Morisette J, Aldridge C, Brown CS, Kumar S, Manier D, Talbert C, Holcombe T (2017) Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: an example with background selection. Ecol Model 363:48–56

    Google Scholar 

  • JASP Team (2018) JASP (Version 0.9)[Computer software].

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773

    Google Scholar 

  • Kurki S, Nikula A, Helle P, Lindén H (2000) Landscape fragmentation and forest composition effects on grouse breeding success in boreal forests. Ecology 81(7):1985–1997

    Google Scholar 

  • LaRue P, Bélanger L, Huot J (1995) Riparian edge effects on boreal balsam fir bird communities. Can J For Res 25:555–566

    Google Scholar 

  • Levins R (1975) Evolution in communities near equilibrium. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Press, New York, pp 16–50

    Google Scholar 

  • Llaneza L, López-Bao JV, Sazatornil V (2012) Insights into wolf presence in human-dominated landscapes: the relative role of food availability, humans and landscape attributes. Biodivers Distrib 18:459–469

    Google Scholar 

  • Loveland TR, Gallant AL, Vogelmann JE (2005) Perspectives on the use of land-cover data for ecological investigations. In: Wiens JA, Moss MR (eds) Issues and perspectives in landscape ecology. Cambridge studies in landscape ecology University Press, Cambridge, pp 120–128

    Google Scholar 

  • Manel S, Dias JM, Ormerod SJ (1999) Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecol Model 120:337–347

    Google Scholar 

  • Margalef R (1974) Ecología. Ediciones Omega, Barcelona, p 951

    Google Scholar 

  • Martín J, Grande R, Hernando A, Eliseo J, Echegaray J, García P et al (2007) Prospección del Lince Ibérico en los montes del centro de España. Fundación Abertis, Cantabria

    Google Scholar 

  • Mateo RG, Felicísimo AM, Muñoz J (2011) Modelos de distribución de especies: Una revisión sintética Species distributions models: a synthetic revisión. Rev Chil Hist Nat 84:217–240

    Google Scholar 

  • McCarthy MA (2007) Bayesian methods for ecology. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Milanesi P, Breiner FT, Puopolo F, Holderegger R (2017) European human-dominated landscapes provide ample space for the recolonization of large carnivore populations under future land change scenarios. Ecography 40:1359–1368

    Google Scholar 

  • Molinari-Jobin A, Kéry M, Marboutin E, Molinari P, Koren I, Fuxjäger C et al (2012) Monitoring in the presence of species misidentification: the case of the Eurasian lynx in the Alps. Anim Conserv 15(3):266–273

    Google Scholar 

  • Monterroso P, Brito JC, Ferreras P, Alves PC (2009) Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small-radio-tracking datasets in species conservation. J Zool 279:27–35

    Google Scholar 

  • Northrup JM, Hooten MB, Anderson CR, Wittemyer G (2013) Selection functions under a use—availability design. Ecol Soc Am 94(7):1456–1463

    Google Scholar 

  • Palomares F, Rodríguez A, Laffitte R, Delibes, M (1991) The status and distribution of the Iberian Lynx Felis pardina (Temminck) in Coto Doñana Area, SW Spain. Estación Biológica de Doñana, Sevilla, p 159–170

  • Palomares F (2001) Vegetation structure and prey abundance requirements of the Iberian lynx: implications for the design of reserves and corridors. J Appl Ecol 38:9–18

    Google Scholar 

  • Palomares F, Delibes M, Ferreras P, Fedriani JM, Calzada J, Revilla E (2000) Iberian lynx in a fragmented landscape: predispersal, dispersal, and postdispersal habitats. Conserv Biol 14:809–818

    Google Scholar 

  • Palomares F, Godoy JA, Píriz A, O’Brien SJ (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11(10):2171–2182

    CAS  PubMed  Google Scholar 

  • Palomo LJ, Gisbert J and Blanco JC (2007) Atlas y Libro Rojo de los Mamíferos Terrestres de España. Madrid Dirección General para la Biodiversidad-SECEM-SECEMU.

  • Pearce J, Boyce MS (2006) Modelling distribution and abundance withpresence-only data. J Appl Ecol 43:405–412

    Google Scholar 

  • Pedraza J (1998) Proyecto de Cartografía de Paisaje de la Comunidad de Madrid. Actualized at: 23/06/2015. Consejería de Medio Ambiente y Desarrollo Regional. Madrid.

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Google Scholar 

  • Planillo A, Malo J (2017) Infraestructure features outperform environmental variables explaining rabbit abundance around motorways. Ecol Evol. https://doi.org/10.1002/ece3.3709

    Article  PubMed  PubMed Central  Google Scholar 

  • QGIS Development Team (2018) QGIS Geographic Information System. Open Source Foundation Project. https://qgis.org.

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rathore P, Roy A, Karnatak H (2019) Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecol Indic 102:199–207

    Google Scholar 

  • Richards CL, Carstens C, Knowles LL (2007) Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. J Biogeogr 34:1833–1845

    Google Scholar 

  • Robinson IH, Delibes M (1988) The distribution of faeces by the Spanish lynx (Felis pardina). J Zool 216(4):577–582

    Google Scholar 

  • Rodríguez JL (1993) Guía de Campo de los Mamíferos Terrestres de España. Ediciones Omega, S. A, Barcelona

    Google Scholar 

  • Rodríguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13:243–251

    Google Scholar 

  • Rodríguez-Jaume MJ, Mora R (2001) Análisis de tablas de contingencia bidimensionales. In: Rodriguez-Jaume MJ, Mora R (eds) Estadística Informática: casos y ejemplos con el SPSS. Universidad de Alicante, Servicio de Publicaciones, p 13

    Google Scholar 

  • Roldán-Martín MJ, de Pablo CTL, de Agar PM (2003) Landscape mosaics recognition and changes over time: a methodological approach. In: Mander U, Antrop M (eds) Multifunctional Landscapes Volume III: Continuity and Change. Wit Press, Boston, pp 55–77

    Google Scholar 

  • Rolstad J (2005) Ladscape ecology and wildlife management. In: Wiens JA, Moss MR (eds) Issues and perspectives in landscape ecology. Cambridge studies in landscape ecology University Press, Cambridge, p 390

    Google Scholar 

  • Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. https://doi.org/10.1371/journal.pone.0118432

    Article  PubMed  PubMed Central  Google Scholar 

  • San Miguel A (2006) (ed) 1ª reimp. Manual para la gestión del hábitat del lince ibérico (Lynx pardinus Temminck) y de su presa principal, el conejo de monte (Oryctolagus cuniculus L.). Fundación CBD-Hábitat. Madrid, p. 263.

  • Schmitz MF, de Aranzabal I, Pineda FD (2007) Spatial analysis of visitor preferences in the outdoor recreational niche of Mediterranean cultural landscapes. Environ Conserv 34(4):300–312

    Google Scholar 

  • Sidak Z (1967) Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc 62:6526–6633

    Google Scholar 

  • Sofaer HR, Hoeting JA, Jarnevich CS (2019) The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol Evol 10:565–577. https://doi.org/10.1111/2041-210X.13140

    Article  Google Scholar 

  • Stockwell DRB, Peters D (1999) The GARP modeling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 2:143–158

    Google Scholar 

  • Tapia L, Domínguez J, Regos A, Vidal M (2014) Using remote sensing data to model European wild rabbit (Oryctolagus cuniculus) occurrence in a highly fragmented landscape in northwestern Spain. Acta Theoriol 59:289–298

    Google Scholar 

  • Tenorio MC, Juaristi CM and Sainz-Ollero H (Eds) (2005) Los Bosque Ibéricos. Una interpretación geobotánica. 4° edición. Planeta, Barcelona, España.

  • Tobler MW, Carrillo-Percastegui SE, Leite-Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178

    Google Scholar 

  • Torre I, Arrizabalaga A, Flaquer F (2003) Estudio de la distribución y abundancia de carnívoros en el parque natural del Montnegre I el corredor mediante fototrampeo fotográfico. Galemys 15(1):15–28

    Google Scholar 

  • Torres J, García-Perea R, Gisbert J, Feliu C (1998) Helminth fauna of the Iberian Lynx Lynx pardinus. J Helminthol 72:221–226

    CAS  PubMed  Google Scholar 

  • Troll C (1939) Luftbildplan Und ökologische Bodenforschung: Ihr Zweckmäßiger Einsatz Für Landscape Ecology Die Wissenschaftliche Erforschung Und Praktische Erschließung Wenig Bekannter Länder. Aerial Imagery and Ecological earth Science. Berlin Geogr Soc 7: 241–298. In: Wiens JA and Moss MR (eds) Issues and Perspectives in Landscape Ecology. Cambridge studies in landscape ecology. University Press, Cambridge, p 390

  • Valverde V, Roldán-Martín MJ, Alonso G, Pérez P, de Agar PM, de Pablo CTL (2008) Análisis de la estructura espacial del paisaje. In: Maestre FT, Escudero A, Bonet A (eds) Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones. King Juan Carlos University, Madrid, España, p 884

    Google Scholar 

  • Vila C, Urios V, Catroviejo J (1994) Use of faeces for scent marking in Iberian wolves ({Canis} lupus). Can J Zool 72(7213):374–377

    Google Scholar 

  • Virgós E (2001) Relative value of riparian woodlands in landscapes with different forest cover for medium-sized Iberian carnivores. Biodivers Conserv 10:1039–1049

    Google Scholar 

  • Virgós E, Cabezas-Díaz S, Malo A, Lozano J, López-Huertas D (2003) Factors shaping European Rabbit abundance in continuous and fragmented populations of central Spain. Acta Theriol 48(1):113–122

    Google Scholar 

  • Warton DI, Shepherd LC (2010) Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology. Ann Appl Stat 4(3):1383–1402

    Google Scholar 

  • Webb JA, Stewardson MJ, Koster WM (2010) Detecting ecological responses to flow variation using Bayesian hierarchical models. Freshw Biol 55(1):108–126

    Google Scholar 

  • Weinstein MP, Bentivegna C, Bovitz P, Harman CR et al (2015) Bayesian inference: application in environmental management and decision-making. Bayesian methods in ecology. New Jersey Department of Environmental Protection, p. 56.

  • Wiens JA, Milne BT (1989) Scaling of ‘landcapes’ in landscape ecology, or, landscape ecology from a beetle’s perspective. Lands Ecol 3(2):87–96

    Google Scholar 

  • Wiens JA, Moss MR (2005) Issues and perspectives in landscape ecology. Cambridge studies in landscape ecology University Press, Cambridge, p 390

    Google Scholar 

  • Zabía M and del Olmo L (2007) Atlas Medio Ambiente de la Comunidad de Madrid. Consejería de Medio Ambiente y Ordenación del Territorio. https://www.madrid.org.

  • Zaniewski AE, Lehmann A, Overton JM (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157:261–280

    Google Scholar 

  • Zonneveld IS (1995) Land ecology. SPB Academic Publishing, Amsterdam, p 199

    Google Scholar 

Download references

Acknowledgements

We thank the previously called Spanish Ministry of Agriculture, Food and Environment (16MNSV002) for funding this study. We also appreciate the effort of Pilar, Beatriz, and Alejandra for their hard work in the laboratory, not forgetting Javier and Jorge for their assistance in the fieldwork. Finally, we want to thank the three anonymous reviewers whose suggestions helped to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Alfaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfaya, P., de Pablo, C.T.L., de Agar, P.M. et al. Assessing the influence of ecological interaction patterns among habitat types on species distribution: studying the Iberian lynx (Lynx pardinus Temminck 1827) in central Spain. Landscape Ecol 35, 1923–1944 (2020). https://doi.org/10.1007/s10980-020-01070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01070-0

Keywords

Navigation