Skip to main content

Advertisement

Log in

Grassland ecosystem services: a systematic review of research advances and future directions

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Grasslands provide a variety of ecosystem services (ESs) for humans. While much ES research has focused on forests and wetlands, synthesizing the currently somewhat sporadic studies of grassland ecosystem services (GESs) is much needed.

Objectives

We aimed to review the scope, major methods, and key findings of GESs, and identify knowledge gaps and future directions.

Methods

We conducted a systematic review of articles published during 1970–2018 (including 380 peer-reviewed articles from Web of Science and 32 book chapters from Google Scholar).

Results

The number of GES studies has accelerated in recent decades, with China (31%) and the United States (18%) together accounting for almost half of them. A total of 33 GESs were mentioned in the searched articles, of which carbon sequestration, forage production, and water erosion control had the highest frequencies. Methods for evaluating GESs include field survey, field experiments, and statistical and process-based modeling. Grasslands are the primary source of meat and dairy products, account for about one-third of the total carbon of all terrestrial ecosystems, and provide numerous other ESs, such as night cooling, soil erosion control, and flood mitigation.

Conclusions

This review presents the state-of-the-science of GESs, and identifies several future research directions. To move forward, we propose a framework with a 3-M methodology: (1) “Multi-scales”—understanding GESs from various spatiotemporal scales; (2) “Multi-methods”—evaluating GESs with multiple statistical and modeling techniques using multiple data sources; and (3) “Multi-perspectives”—assessing GESs from ecological, social, and economic perspectives for sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified from Campbell et al. 1996, White et al. 2000 and Havstad et al. 2007)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abulizi A, Yang Y, Mamat Z, Luo J, Abdulslam D, Xu Z, Zayiti A, Ahat A, Halik W (2017) Land-use change and its effects in Charchan Oasis, Xinjiang, China. Land Degrad Dev 28(1):106–115

    Google Scholar 

  • Affek AN (2018) Indicators of ecosystem potential for pollination and honey production. Ecol Indic 94:33–45

    Google Scholar 

  • Akhtar N, Rashid A, Murad W, Bergmeier E (2013) Diversity and use of ethno-medicinal plants in the region of Swat. North Pak J Ethnobiol Ethnomed 9:25

    Google Scholar 

  • Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Bluethgen N, Boehm S, Grassein F, Hoelzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schoening I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18(8):834–843

    PubMed  PubMed Central  Google Scholar 

  • Anadon JD, Sala OE, Turner BL II, Bennett EM (2014) Effect of woody-plant encroachment on livestock production in North and South America. Proc Natl Acad Sci USA 111(35):12948–12953

    CAS  PubMed  Google Scholar 

  • Angelstam P, Munoz-Rojas J, Pinto-Correia T (2019) Landscape concepts and approaches foster learning about ecosystem services. Landsc Ecol 34(7):1445–1460

    Google Scholar 

  • Archer SR, Predick KI (2014) An ecosystem services perspective on brush management: research priorities for competing land-use objectives. J Ecol 102:1394–1407

    Google Scholar 

  • Atjay GL, Ketner P, Duvigneaud P (1979) Terrestrial primary production and phytomass. In: Bolin B, Degens ET, Kempe S, Ketner P (eds) The global carbon cycle. Wiley, Chichester, pp 129–181

    Google Scholar 

  • Auffret AG, Cousins SAO (2018) Land uplift creates important meadow habitat and a potential original niche for grassland species. Proc R Soc B 285:20172349

    PubMed  Google Scholar 

  • Bagstad K, Villa F, Johnson G, Voigt B (2011) ARIES–ARtificial Intelligence for Ecosystem Services: a guide to models and data, version 1.0. ARIES report series n.1

  • Bai Y, Wang Y (2017) Long-term ecological research and demonstrations support protection and sustainable management of grassland ecosystems. Bull Chin Acad Sci 32(8):910–916 (in Chinese with English abstract)

    Google Scholar 

  • Barnes RF, Nelson CJ (2003) Forages and grasslands in a changing world. In: Barnes RF, Nelson CJ, Collins M, Moore KJ (eds) Forages: an introduction to grassland agriculture. Iowa State University Press, Ames

    Google Scholar 

  • Bastian O, Grunewald K, Syrbe R-U, Walz U, Wende W (2014) Landscape services: the concept and its practical relevance. Landsc Ecol 29(9):1463–1479

    Google Scholar 

  • Bennett AB, Isaacs R (2014) Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agric Ecosyst Environ 193:1–8

    Google Scholar 

  • Brown JR, MacLeod ND (2017) An ecosystem services filter for rangeland restoration. Rangeland J 39(5–6):451–459

    Google Scholar 

  • Byrd KB, Flint LE, Alvarez P, Casey CF, Sleeter BM, Soulard CE, Flint AL, Sohl TL (2015) Integrated climate and land use change scenarios for California rangeland ecosystem services: wildlife habitat, soil carbon, and water supply. Landsc Ecol 30(4):729–750

    Google Scholar 

  • Campbell B, Frost P, Byron N (1996) Miombo woodlands and their use: overview and key issues. In: Campbell B (ed) The miombo in transition: woodlands and welfare in Africa. Center for International Forestry Research (CIFOR), Bogor, pp 1–10

    Google Scholar 

  • Cao Q, Yu D, Georgescu M, Han Z, Wu J (2015) Impacts of land use and land cover change on regional climate: a case study in the agro-pastoral transitional zone of China. Environ Res Lett 10(12):124025

    Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59

    CAS  PubMed  Google Scholar 

  • Cardinale BJ, Gross K, Fritschie K, Flombaum P, Fox JW, Rixen C, van Ruijven J, Reich PB, Scherer-Lorenzen M, Wilsey BJ (2013) Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology 94(8):1697–1707

    PubMed  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104(46):18123–18128

    CAS  PubMed  Google Scholar 

  • Ceotto E (2008) Grasslands for bioenergy production. A review. Agron Sustain Dev 28:47–55

    Google Scholar 

  • Chapman S, Watson JEM, Salazar A, Thatcher M, McAlpine CA (2017) The impact of urbanization and climate change on urban temperatures: a systematic review. Landsc Ecol 32(10):1921–1935

    Google Scholar 

  • Chen L, Gao J, Ji Y, Bai Z, Shi M, Liu H (2014) Effects of particulate matter of various sizes derived from suburban farmland, woodland and grassland on air quality of the central district in Tianjin, China. Aerosol Air Qual Res 14(3):829–839

    Google Scholar 

  • Chi W, Zhao Y, Kuang W, He H (2019) Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci Total Environ 668:204–215

    CAS  PubMed  Google Scholar 

  • Chytry M, Jarosik V, Pysek P, Hajek O, Knollova I, Tichy L, Danihelka J (2008) Separating habitat invisibility by alien plants from the actual level of invasion. Ecology 89(6):1541–1553

    PubMed  Google Scholar 

  • Conant RT (2010) Challenges and opportunities for carbon sequestration in grassland systems: a technical report on grassland management and climate change mitigation. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Conkling TJ, Belant JL, DeVault TL, Martin JA (2017) Effects of crop type and harvest on nest survival and productivity of dickcissels in semi-natural grasslands. Agric Ecosyst Environ 240:224–232

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    CAS  Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Change 26:152–158

    Google Scholar 

  • Cui F, Tang H, Zhang Q, Wang B, Dai L (2019) Integrating ecosystem services supply and demand into optimized management at different scales: a case study in Hulunbuir,China. Ecosyst Serv 39:100984

    Google Scholar 

  • Daily G (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408

    Google Scholar 

  • Deng L, Shangguan Z, Sweeney S (2014) “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China. Sci Rep 4:7039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dirks L, Dirks G, Wu J (2012) Evolving perspectives on biofuels in the United States. Front Energy 6(4):379–393

    Google Scholar 

  • Dixon AP, Faber-Langendoen D, Josse C, Morrison J, Loucks CJ (2014) Distribution mapping of world grassland types. J Biogeogr 41(11):2003–2019

    Google Scholar 

  • Duarte GT, Santos PM, Cornelissen TG, Ribeiro MC, Paglia AP (2018) The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc Ecol 33(8):1247–1257

    Google Scholar 

  • Egoh B, Reyers B, Rouget M, Bode M, Richardson DM (2009) Spatial congruence between biodiversity and ecosystem services in South Africa. Biol Conserv 142:553–562

    Google Scholar 

  • Egoh B, Reyers B, Rouget M, Richardson DM, Le Maitre DC, van Jaarsveld AS (2008) Mapping ecosystem services for planning and management. Agric Ecosyst Environ 127:135–140

    Google Scholar 

  • Egoh BN, Reyers B, Rouget M, Richardson DM (2011) Identifying priority areas for ecosystem service management in South African grasslands. J Environ Manag 92(6):1642–1650

    Google Scholar 

  • Enri SR, Probo M, Farruggia A, Lanore L, Blanchetete A, Dumont B (2017) A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity. Agric Ecosyst Environ 241:1–10

    Google Scholar 

  • Eze S, Palmer SM, Chapman PJ (2018) Soil organic carbon stock in grasslands: effects of inorganic fertilizers, liming and grazing in different climate settings. J Environ Manag 223:74–84

    CAS  Google Scholar 

  • Farley KA, Bremer LL, Harden CP, Hartsig J (2013) Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: implications for payment for ecosystem services. Conserv Lett 6(1):21–27

    Google Scholar 

  • Farley KA, Kelly EF, Hofstede RGM (2004) Soil organic carbon and water retention following conversion of grasslands to pine plantations in the Ecuadoran Andes. Ecosystems 7(7):729–739

    Google Scholar 

  • Favretto N, Stringer LC, Dougill AJ, Dallimer M, Perkins JS, Reed MS, Atlhopheng JR, Mulale K (2016) Multi-criteria decision analysis to identify dryland ecosystem service trade-offs under different rangeland land uses. Ecosyst Serv 17:142–151

    Google Scholar 

  • Feng X, Fu B, Lu N, Zeng Y, Wu B (2013) How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China’s Loess Plateau. Sci Rep 3:2846

    PubMed  PubMed Central  Google Scholar 

  • Ferner J, Schmidtlein S, Guuroh RT, Lopatin J, Linstaedter AA (2018) Disentangling effects of climate and land-use change on West African drylands’ forage supply. Glob Environ Change Hum Policy Dimens 53:24–38

    Google Scholar 

  • Fisher JA, Patenaude G, Meir P, Nightingale AJ, Rounsevell MDA, Williams M, Woodhouse IH (2013) Strengthening conceptual foundations: analysing frameworks for ecosystem services and poverty alleviation research. Glob Environ Change Hum Policy Dimens 23(5):1098–1111

    Google Scholar 

  • Fu B, Liu Y, Lu Y, He C, Zeng Y, Wu B (2011) Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol Complex 8(4):284–293

    Google Scholar 

  • Fu B, Wang Y, Xu P, Yan K (2013) Mapping the flood mitigation services of ecosystems—a case study in the Upper Yangtze River Basin. Ecol Eng 52:238–246

    Google Scholar 

  • Garrido P, Elbakidze M, Angelstam P (2017) Stakeholders’ perceptions on ecosystem services in Ostergotland’s (Sweden) threatened oak wood-pasture landscapes. Landsc Urban Plan 158:96–104

    Google Scholar 

  • Gong L, Shao Q, Zhai J (2014) Sand-fixing function under the change of vegetation coverage in a wind erosion area in northern China. J Resour Ecol 5(2):105–114

    Google Scholar 

  • Gray EF, Bond WJ (2013) Will woody plant encroachment impact the visitor experience and economy of conservation areas? Koedoe. https://doi.org/10.4102/koedoe.v55i1.1106

    Article  Google Scholar 

  • Han G, Hao X, Zhao M, Wang M, Ellert BH, Willms W, Wang M (2008) Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agric Ecosyst Environ 125:21–32

    CAS  Google Scholar 

  • Hao R, Yu D, Liu Y, Liu Y, Qiao J, Wang X, Du J (2017a) Impacts of changes in climate and landscape pattern on ecosystem services. Sci Total Environ 579:718–728

    CAS  PubMed  Google Scholar 

  • Hao R, Yu D, Wu J (2017b) Relationship between paired ecosystem services in the grassland and agro-pastoral transitional zone of China using the constraint line method. Agric Ecosyst Environ 240:171–181

    Google Scholar 

  • Havstad KM, Peters DPC, Skaggs R, Brown J, Bestelmeyer B, Fredrickson E, Herrick J, Wright J (2007) Ecological services to and from rangelands of the United States. Ecol Econ 64(2):261–268

    Google Scholar 

  • Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31(5):532–538

    Google Scholar 

  • Hein L, van Koppen K, de Groot RS, van Ierland EC (2006) Spatial scales, stakeholders and the valuation of ecosystem services. Ecol Econ 57:209–228

    Google Scholar 

  • Helm A, Oja T, Saar L, Takkis K, Talve T, Partel M (2009) Human influence lowers plant genetic diversity in communities with extinction debt. J Ecol 97:1329–1336

    Google Scholar 

  • Holland JM, Douma JC, Crowley L, James L, Kor L, Stevenson DRW, Smith BM (2017) Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron Sustain Dev 37(4):31

    Google Scholar 

  • Honigova I, Vackar D, Lorencova E, Melichar J, Gotzl M, Sonderegger G, Ouskova V, Hosek M, Chobot K (2012) Survey on grassland ecosystem services. Report to the EEA—European Topic Centre on Biological Diversity. Nature Conservation Agency of the Czech Republic, Prague, p 78

    Google Scholar 

  • Horrocks CA, Dungait JAJ, Heal KV, Cardenas LM (2015) Comparing N2O fluxes from recently created extensive grasslands and sites remaining under intensive agricultural management. Agric Ecosyst Environ 199:77–84

    CAS  Google Scholar 

  • Huntsinger L, Oviedo JL (2014) Ecosystem services are social-ecological services in a traditional pastoral system: the case of California’s mediterranean rangelands. Ecol Soc 19(1):8

    Google Scholar 

  • Isbell F, Adler PR, Eisenhauer N, Fornara D, Kimmel K, Kremen C, Letourneau DK, Liebman M, Polley HW, Quijas S, Scherer-Lorenzen M (2017) Benefits of increasing plant diversity in sustainable agroecosystems. J Ecol 105(4):871–879

    Google Scholar 

  • Jenkins WA, Murray BC, Kramer RA, Faulkner SP (2010) Valuing ecosystem services from wetlands restoration in the Mississippi Alluvial Valley. Ecol Econ 69:1051–1061

    Google Scholar 

  • Jiang C, Zhang H, Zhang Z (2018) Spatially explicit assessment of ecosystem services in China’s Loess Plateau: patterns, interactions, drivers, and implications. Glob Planet Change 161:41–52

    Google Scholar 

  • Jiang C, Zhang H, Zhang Z, Wang D (2019) Model-based assessment soil loss by wind and water erosion in China’s Loess Plateau: dynamic change, conservation effectiveness, and strategies for sustainable restoration. Glob Planet Change 172:396–413

    Google Scholar 

  • Kemp DR, Han G, Hou X, Michalk DL, Hou F, Wu J, Zhang Y (2013) Innovative grassland management systems for environmental and livelihood benefits. Proc Natl Acad Sci USA 110(21):8369–8374

    CAS  PubMed  Google Scholar 

  • Khan KS, Kunz R, Kleijnen J, Antes G (2003) Five steps to conducting a systematic review. J R Soc Med 96(3):118–121

    PubMed  PubMed Central  Google Scholar 

  • Lal R (2011) Sequestering carbon in soils of agro-ecosystems. Food Policy 36:S33–S39

    Google Scholar 

  • Lamarque P, Meyfroidt P, Nettier B, Lavorel S (2014) How ecosystem services knowledge and values influence farmers’ decision-making. PLoS ONE 9(9):e107572

    PubMed  PubMed Central  Google Scholar 

  • Lamarque P, Tappeiner U, Turner C, Steinbacher M, Bardgett RD, Szukics U, Schermer M, Lavorel S (2011) Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg Environ Change 11(4):791–804

    Google Scholar 

  • Laura VV, Bert R, Steven B, Dirk R, Kris V (2018) Assessing the impact of grassland management extensification in temperate areas on multiple ecosystem services and biodiversity. Agric Ecosyst Environ 267:201–212

    Google Scholar 

  • Lavorel S, Grigulis K (2012) How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J Ecol 100(1):128–140

    Google Scholar 

  • Lavorel S, Grigulis K, Leitinger G, Kohler M, Schirpke U, Tappeiner U (2017) Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg Environ Change 17(8):2251–2264

    PubMed  PubMed Central  Google Scholar 

  • Li X, Wang Z, Wang D, Wang L, Pan D, Li J, De K, Seastedt TR (2019) Livestock grazing impacts on plateau pika (Ochotona curzoniae) vary by species identity. Agric Ecosyst Environ 275:23–31

    Google Scholar 

  • Lian Z, Xu W, Yang W, Blank D, Huang Y (2014) Effects of livestock grazing on soil seed bank: a review. Pratacult Sci 31(12):2301–2307

    Google Scholar 

  • Lindgren J, Lindborg R, Cousins SAO (2018) Local conditions in small habitats and surrounding landscape are important for pollination services, biological pest control and seed predation. Agric Ecosyst Environ 251:107–113

    Google Scholar 

  • Liu J, Wu J, Liu F, Han X (2012) Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China. Appl Energy 93:305–318

    Google Scholar 

  • Lu D, Mao W, Yang D, Zhao J, Xu J (2018) Effects of land use and landscape pattern on PM2.5 in Yangtze River Delta, China. Atmos Pollut Res 9(4):705–713

    CAS  Google Scholar 

  • Machovina B, Feeley KJ (2017) Restoring low-input high-diversity grasslands as a potential global resource for biofuels. Sci Total Environ 609:205–214

    CAS  PubMed  Google Scholar 

  • Macleod CJA, Ferrier RC (2011) Temperate grasslands in catchment systems: the role of scale, connectivity and thresholds in the provision and regulation of water quality and quantity. In: Lemaire G, Hodgson J, Chabbi A (eds) Grassland productivity and ecosystem services. CABI International, Oxfordshire, pp 229–238

    Google Scholar 

  • Manning P, de Vries FT, Tallowin JRB, Smith R, Mortimer SR, Pilgrim ES, Harrison KA, Wright DG, Quirk H, Benson J, Shipley B, Cornelissen JHC, Kattge J, Boenisch G, Wirth C, Bardgett RD (2015) Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J Appl Ecol 52(5):1188–1196

    CAS  Google Scholar 

  • Martinez Pastur G, Peri PL, Lencinas MV, Garcia-Llorente M, Martin-Lopez B (2016) Spatial patterns of cultural ecosystem services provision in Southern Patagonia. Landsc Ecol 31(2):383–399

    Google Scholar 

  • Martinez-Estevez L, Balvanera P, Pacheco J, Ceballos G (2013) Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands. PLoS ONE 8(10):e75229

    CAS  PubMed  PubMed Central  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington, DC

    Google Scholar 

  • Modernel P, Rossing WAH, Corbeels M, Dogliotti S, Picasso V, Tittonell P (2016) Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environ Res Lett 11(11):113002

    Google Scholar 

  • Monteiro MV, Doick KJ, Handley P, Peace A (2016) The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban For Urban Green 16:160–169

    Google Scholar 

  • Mu J, Zeng Y, Wu Q, Niklas KJ, Niu K (2016) Traditional grazing regimes promote biodiversity and increase nectar production in Tibetan alpine meadows. Agric Ecosyst Environ 233:336–342

    Google Scholar 

  • Nearing M, Foster GR, Lane LJ, Finkner SC (1989) A process-based soil erosion model for USDA-water erosion prediction project technology. Trans ASAE 32(5):1587–1593

    Google Scholar 

  • Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchère V, van Oost K (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 61(2–3):131–154

    Google Scholar 

  • Nearing M, Pierson F, Hernandez M, Al-Hamdan O, Weltz M, Spaeth K, Wei H, Stone J (2011) A rangeland hydrology and erosion model. Trans ASABE 54:901–908

    Google Scholar 

  • Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50(2):205–218

    Google Scholar 

  • OECD, FAO (2011) OECD-FAO Agricultural Outlook 2011–2020. OECD Publishing and FAO, Paris. https://doi.org/10.1787/agr_outlook-2011-en

    Book  Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. Report ORNL-5862. Oak Ridge National Laboratory, Tennessee

  • O’Mara FP (2012) The role of grasslands in food security and climate change. Ann Bot 110(6):1263–1270

    PubMed  PubMed Central  Google Scholar 

  • Onatibia GR, Aguiar MR, Semmartin M (2015) Are there any trade-offs between forage provision and the ecosystem service of C and N storage in arid rangelands? Ecol Eng 77:26–32

    Google Scholar 

  • Orford KA, Murray PJ, Vaughan IP, Memmott J (2016) Modest enhancements to conventional grassland diversity improve the provision of pollination services. J Appl Ecol 53(3):906–915

    PubMed  PubMed Central  Google Scholar 

  • Oteros-Rozas E, Martin-Lopez B, Fagerholm N, Bieling C, Plieninger T (2018) Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecol Indic 94:74–86

    Google Scholar 

  • Oteros-Rozas E, Martin-Lopez B, Lopez CA, Palomo I, Gonzalez JA (2013) Envisioning the future of transhumant pastoralism through participatory scenario planning: a case study in Spain. Rangel J 35(3):251–272

    Google Scholar 

  • Pan Y, Wu J, Xu Z (2014) Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol Complex 17:79–86

    Google Scholar 

  • Papanastasis VP, Bautista S, Chouvardas D, Mantzanas K, Papadimitriou M, Mayor AG, Koukioumi P, Papaioannou A, Vallejo RV (2017) Comparative assessment of goods and services provided by grazing regulation and reforestation in degraded mediterranean rangelands. Land Degrad Dev 28(4):1178–1187

    Google Scholar 

  • Parton W, Scurlock J, Ojima D, Schimel D, Hall D (1995) Impact of climate change on grassland production and soil carbon worldwide. Glob Change Biol 1(1):13–22

    Google Scholar 

  • Petz K, Alkemade R, Bakkenes M, Schulp CJE, van der Velde M, Leemans R (2014) Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob Environ Change Human Policy Dimens 29:223–234

    Google Scholar 

  • Piao S, Fang J, Zhou L, Tan K, Tao S (2007) Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Glob Biogeochem Cycles. https://doi.org/10.1029/2005gb002634

    Article  Google Scholar 

  • Pogue SJ, Krobel R, Janzen HH, Beauchemin KA, Legesse G, de Souza DM, Iravani M, Selin C, Byrne J, McAllister TA (2018) Beef production and ecosystem services in Canada’s prairie provinces: a review. Agric Syst 166:152–172

    Google Scholar 

  • Prochnow A, Heiermann M, Plochl M, Linke B, Idler C, Amon T, Hobbs PJ (2009) Bioenergy from permanent grassland—a review: 1. Biogas Bioresour Technol 100:4931–4944

    CAS  PubMed  Google Scholar 

  • Qiu J, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, Loheide SP II, Turner AG (2018) Understanding relationships among ecosystem services across spatial scales and over time. Environ Res Lett 13(5):054020

    Google Scholar 

  • Reed MS, Stringer LC, Dougill AJ, Perkins JS, Atlhopheng JR, Mulale K, Favretto N (2015) Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems. J Environ Manag 151:472–485

    CAS  Google Scholar 

  • Ren Y, Lu Y, Fu B (2016) Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: a meta-analysis. Ecol Eng 95:542–550

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46(1):30–33

    Google Scholar 

  • Renard K, Yoder D, Lightle D, Dabney S (2011) Universal soil loss equation and revised universal soil loss equation. Handbook of erosion modelling. Blackwell Publ, Oxford, pp 137–167

    Google Scholar 

  • Robledo-Abad C, Althaus HJ, Berndes G, Bolwig S, Corbera E, Creutzig F, Garcia-Ulloa J, Geddes A, Gregg JS, Haberl H, Hanger S, Harper RJ, Hunsberger C, Larsen RK, Lauk C, Leitner S, Lilliestam J, Lotze-Campen H, Muys B, Nordborg M, Olund M, Orlowsky B, Popp A, Portugal-Pereira J, Reinhard J, Scheiffle L, Smith P (2017) Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy 9(3):541–556

    PubMed  Google Scholar 

  • Rodriguez JP, Beard TD, Bennett EM, Cumming GS, Cork SJ, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time, and ecosystem services. Ecol Soc 11(1):28

    Google Scholar 

  • Saha D, Kukal SS (2015) Soil structural stability and water retention characteristics under different land uses of degranded lower himalayas of North-west India. Land Degrad Dev 26(3):263–271

    Google Scholar 

  • Sala OE, Paruelo JM (1997) Ecosystem services in grasslands. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 237–251

    Google Scholar 

  • Sala OE, Yahdjian L, Havstad K, Aguiar MR (2017) Rangeland ecosystem services: nature’s supply and humans’ demand. Rangeland Systems. Springer Series on Environmental Management. Springer, Berlin, pp 467–489

    Google Scholar 

  • Sanaei A, Ali A, Chahouki MAZ (2018) The positive relationships between plant coverage, species richness, and aboveground biomass are ubiquitous across plant growth forms in semi-steppe rangelands. J Environ Manag 205:308–318

    Google Scholar 

  • Sannigrahi S, Bhatt S, Rahmat S, Paul SK, Sen S (2018) Estimating global ecosystem service values and its response to land surface dynamics during 1995-2015. J Environ Manag 223:115–131

    Google Scholar 

  • Schaich H, Bieling C, Plieninger T (2010) Linking ecosystem services with cultural landscape research. GAIA 19(4):269–277

    Google Scholar 

  • Sherrouse BC, Semmens DJ (2015) Social values for ecosystem services, version 3.0 (SolVES 3.0): documentation and user manual. U.S. Geological Survey Open-File Report 2015-1008. http://dx.doi.org/10.3133/ofr20151008

  • Silvertown J (2015) Have ecosystem services been oversold? Trends Ecol Evol 30:641–648

    PubMed  Google Scholar 

  • Silvestri S, Zaibet L, Said MY, Kifugo SC (2013) Valuing ecosystem services for conservation and development purposes: a case study from Kenya. Environ Sci Policy 31:23–33

    Google Scholar 

  • Sirimarco X, Paula Barral M, Horacio Villarino S, Laterra P (2017) Water regulation by grasslands: a global meta-analysis. Ecohydrology. https://doi.org/10.1002/eco.1934

    Article  Google Scholar 

  • Smit HJ, Metzger MJ, Ewert F (2008) Spatial distribution of grassland productivity and land use in Europe. Agric Syst 98:208–219

    Google Scholar 

  • Stahlheber KA, Watson B, Dickson TL, Disney R, Gross KL (2016) Balancing biofuel production and biodiversity: harvesting frequency effects on production and community composition in planted tallgrass prairie. Biomass Bioenergy 92:98–105

    Google Scholar 

  • Sun R, Chen L (2017) Effects of green space dynamics on urban heat islands: mitigation and diversification. Ecosyst Serv 23:38–46

    Google Scholar 

  • Sutton PC, Costanza R (2002) Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol Econ 41:509–527

    Google Scholar 

  • Tallis H, Ricketts T, Guerry A, Wood S, Sharp R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Forster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim C, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J, Griffin R, Glowinski K, Chaumont N, Perelman A, Lacayo M (2013) InVEST 2.5. 6 User’s Guide. The Natural Capital Project, Stanford

  • Tao S, Fang J, Zhao X, Zhao S, Shen H, Hu H, Tang Z, Wang Z, Guo Q (2015) Rapid loss of lakes on the Mongolian Plateau. Natl Acad Sci USA 112(7):2281–2286

    CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    CAS  PubMed  Google Scholar 

  • Trolliet F, Serckx A, Forget P-M, Beudels-Jamar RC, Huynen M-C, Hambuckers A (2016) Ecosystem services provided by a large endangered primate in a forest-savanna mosaic landscape. Biol Conserv 203:55–66

    Google Scholar 

  • van Eekeren N, de Boer H, Hanegraaf M, Bokhorst J, Nierop D, Bloem J, Schouten T, de Goede R, Brussaard L (2010) Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil Biol Biochem 42(9):1491–1504

    Google Scholar 

  • Vukomanovic J, Steelman T (2019) A systematic review of relationships between mountain wildfire and ecosystem services. Landsc Ecol 34:1179–1194

    Google Scholar 

  • Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng C, Liu J, Zhong Z, Zhu H, Yuan X, Chang Q, Liu C (2019) Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc Natl Acad Sci USA 116(13):6187–6192

    CAS  PubMed  Google Scholar 

  • Wang Z, Han X, Li L (2008) Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia. J Environ Manag 86(3):529–534

    CAS  Google Scholar 

  • Wang Z, Song Y, Gulledge J, Yu Q, Liu H, Han X (2009) China’s grazed temperate grasslands are a net source of atmospheric methane. Atmos Environ 43(13):2148–2153

    CAS  Google Scholar 

  • Wang B, Tang H, Xu Y (2017a) Integrating ecosystem services and human well-being into management practices: insights from a mountain-basin area, China. Ecosyst Serv 27:58–69

    CAS  Google Scholar 

  • Wang M, Wagner M, Miguez-Macho G, Kamarianakis Y, Mahalov A, Moustaoui M, Miller J, VanLoocke A, Bagley JE, Bernacchi CJ, Georgescu M (2017b) On the long-term hydroclimatic sustainability of perennial bioenergy crop expansion over the United States. J Clim 30(7):2535–2557

    Google Scholar 

  • Wehn S, Hovstad KA, Johansen L (2018) The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands. Web Ecol 18(1):55–65

    Google Scholar 

  • Wen L, Dong S, Li Y, Li X, Shi J, Wang Y, Liu D, Ma Y (2013) Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai–Tibetan Plateau, China. PLoS ONE. https://doi.org/10.1371/journal.pone.0058432

    Article  PubMed  PubMed Central  Google Scholar 

  • Westman WE (1977) How much are nature’s services worth? Science 197(4307):960–964

    CAS  PubMed  Google Scholar 

  • Weyland F, Laterra P (2014) Recreation potential assessment at large spatial scales: a method based in the ecosystem services approach and landscape metrics. Ecol Indic 39:34–43

    Google Scholar 

  • White R, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems: grassland ecosystems. World Resources Institute, Washington, DC

    Google Scholar 

  • Whittaker RH, Likens E (1975) The biosphere and man. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere, ecological studies no. 14, vol 306. Springer, Berlin Table 15-1

    Google Scholar 

  • Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18(7):626–635

    PubMed  Google Scholar 

  • Wu JG (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landsc Ecol 28:999–1023

    Google Scholar 

  • Wu JG, Li H (2006a) Concepts of scale and scaling. In: Wu J, Jones KB, Li H, Loucks OL (eds) Scaling and uncertainty analysis in ecology: methods and applications. Springer, Dordrecht, pp 3–15

    Google Scholar 

  • Wu JG, Li H (2006b) Perspectives and methods of scaling. In: Wu J, Jones KB, Li H, Loucks OL (eds) Scaling and uncertainty analysis in ecology: methods and applications. Springer, Dordrecht, pp 17–44

    Google Scholar 

  • Wu JG, Naeem S, Elser J, Bai Y, Huang J, Kang L, Pan Q, Wang Q, Hao S, Han X (2015) Testing biodiversity-ecosystem functioning relationship in the world’s largest grassland: overview of the IMGRE project. Landsc Ecol 30:1723–1736

    Google Scholar 

  • Wu JX, Zhao Y, Yu C, Luo L, Pan Y (2017) Land management influences trade-offs and the total supply of ecosystem services in alpine grassland in Tibet, China. J Environ Manag 193:70–78

    Google Scholar 

  • Xia J, Liu S, Liang S, Chen Y, Xu W, Yuan W (2014) Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens 6(3):1783–1802

    Google Scholar 

  • Yahdjian L, Sala OE, Havstad KM (2015) Rangeland ecosystem services: shifting focus from supply to reconciling supply and demand. Front Ecol Environ 13(1):44–51

    Google Scholar 

  • Yan Y, Xu X, Xin X, Yang G, Wang X, Yan R, Chen B (2011) Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of northern China. CATENA 87(3):351–356

    CAS  Google Scholar 

  • Zhang MA, Borjigin E, Zhang HP (2007) Mongolian nomadic culture and ecological culture: on the ecological reconstruction in the agro-pastoral mosaic zone in Northern China. Ecol Econ 62(1):19–26

    Google Scholar 

  • Zhang H, Fan J, Cao W, Harris W, Li Y, Chi W, Wang S (2018a) Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci Total Environ 639:1038–1050

    CAS  PubMed  Google Scholar 

  • Zhang H, Fan J, Cao W, Zhong H, Harris W, Gong G, Zhang Y (2018b) Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecol Eng 116:67–79

    Google Scholar 

  • Zhang X, Niu J, Buyantuev A, Zhang Q, Dong J, Kang S, Zhang J (2016) Understanding grassland degradation and restoration from the perspective of ecosystem services: a case study of the Xilin River Basin in Inner Mongolia, China. Sustainability 8(7):594

    Google Scholar 

  • Zhao Y, Wu J, He C, Ding G (2017) Linking wind erosion to ecosystem services in drylands: a landscape ecological approach. Landsc Ecol 32(12):2399–2417

    Google Scholar 

  • Zobeck TM, Parker NC, Haskell S, Guoding K (2000) Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agric Ecosyst Environ 82(1–3):247–259

    Google Scholar 

  • Zobeck TM, Sterk G, Funk R, Rajot JL, Stout JE, Van Pelt RS (2003) Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surf Proc Land 28(11):1163–1188

    Google Scholar 

Download references

Acknowledgements

We thank Yingbo Qu and Mobeen Akhtar for technical assistance with literature search and anonymous reviewers for their valuable comments. This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program of China (2019QZKK0405), National Natural Science Foundation of China (41971130 and 41871185) and the National Basic Research Program of China (2014CB954303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, Z. & Wu, J. Grassland ecosystem services: a systematic review of research advances and future directions. Landscape Ecol 35, 793–814 (2020). https://doi.org/10.1007/s10980-020-00980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-00980-3

Keywords

Navigation