Skip to main content

Advertisement

Log in

Influence of landscape and time of year on bat-wind turbines collision risks

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Collisions with wind turbines threaten bat populations worldwide. Previous studies tried to assess the effects of landscape on mortalities. Yet, the count of carcasses found per species is low, leading to a low statistical power. Acoustic surveys collect large datasets (proxy for bat density); however, if bat vertical distribution is not accounted for, a key mechanism in collisions is missed.

Objectives

Our goal was to disentangle the effects of landscape on bat density and vertical distribution to produce recommendations for wind farm siting.

Methods

With a vertical array of two microphones, we monitored the acoustic activity and located the vertical distribution of more than 16 bat species on 48 wind masts in France and Belgium (> 8000 nights). We modelled bat density and vertical distribution for six species in function of distance to water, woodland and buildings, and in function of the topography at three different scales (200 m, 1000 m and 5000 m).

Results

The proportion of flights at heights with collision risk was maximum in spring and autumn and minimum in summer for three species. This effect was often antagonistic to the effect of bat density. The landscape had a stronger effect on bat density than on bat vertical distribution.

Conclusions

Positioning wind farms away from woodland should reduce the density and therefore the collision risks of low-flying species but should be inefficient for high-flying species. The effect of topography was stronger at large scales and complex, thus studying situations such as coastlines or mountain passes would provide more insight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ADEME (2015) Rapport final sur la cartographie éolienne nationale, réalisé par Meteolien/Météo-France

  • AIE (2017) World energy outlook. Éditions OCDE ParisAIE. https://doi.org/10.1787/20725302

  • Arnett EB (2016) Mitigating wind energy impacts on wildlife: approaches for multiple taxa. Hum Wildl Interact 10:28–41

    Google Scholar 

  • Arnett EB, Baerwald EF (2013) Impacts of wind energy development on bats: implications for conservation. Bat evolution, ecology, and conservation. Springer, New York, pp 435–456

    Google Scholar 

  • Arnett EB, Baerwald EF, Mathews F, Rodrigues L, Rodríguez-Durán A, Rydell J, Villegas-Patraca R, Voigt CC (2016) Impacts of wind energy development on bats: a global perspective. In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: conservation of bats in a changing world. Springer, Cham. https://doi.org/10.1007/978-3-319-25220-9_11

    Chapter  Google Scholar 

  • Arnett EB, Huso MM, Schirmacher MR, Hayes JP (2011) Altering turbine speed reduces bat mortality at wind-energy facilities. Front Ecol Environ 9:209–214.

    Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74:1175–1178.

    Google Scholar 

  • Arthur L, Lemaire M (2015) Les chauves-souris de France. Biotope Editions, Mèze, Paris

    Google Scholar 

  • Barataud M (2015) Acoustic ecology of European bats: species identification, study of their habitats and foraging behaviour. Biotope éditions, Paris

    Google Scholar 

  • Barclay RMR, Harder LD (2003) Life histories of bats : life in the slow lane. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 209–253

    Google Scholar 

  • Barré K, Le Viol I, Bas Y, Julliard R, Kerbiriou C (2018) Estimating habitat loss due to wind turbine avoidance by bats: implications for European siting guidance. Biol Conserv 226:205–214

    Google Scholar 

  • Bigard C, Pioch S, Thompson JD (2017) The inclusion of biodiversity in environmental impact assessment: policy-related progress limited by gaps and semantic confusion. J Environ Manag 200:35–45.

    Google Scholar 

  • Bolívar-Cimé B, Bolívar-Cimé A, Cabrera-Cruz SA, Muñoz-Jiménez Ó, Villegas-Patraca R (2016) Bats in a tropical wind farm: species composition and importance of the spatial attributes of vegetation cover on bat fatalities. J Mamm 97:1197–1208.

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135.

    PubMed  Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) Modeling zero-inflated count data with glmmTMB. bioRXiv. https://doi.org/10.1101/132753

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. J Wildl Manag 67:655.

    Google Scholar 

  • Dietz C, Nill D, von Helversen O (2009) Bats of Britain, Europe and Northwest Africa. A & C Black, London

    Google Scholar 

  • Dürr T, Bach L (2002) Fledermäuse als Opfer von Windkraftanlagen in Deutschland. Nyctalus 8:115–118

    Google Scholar 

  • Frick WF, Baerwald EF, Pollock JF, Barclay RMR, Szymanski JA, Weller TJ, Russell AL, Loeb SC, Medellin RA, McGuire LP (2017) Fatalities at wind turbines may threaten population viability of a migratory bat. Biol Conserv 209:172–177.

    Google Scholar 

  • Hedenström A (2009) Optimal migration strategies in bats. J Mamm 90:1298–1309

    Google Scholar 

  • Heiberger RM, Holland B (2004) Multiple comparisons. Statistical analysis and data display, Springer texts in statistics. Springer, New York, pp 155–185.

    Google Scholar 

  • Heim O, Treitler JT, Tschapka M, Knörnschild M, Jung K (2015) The importance of landscape elements for bat activity and species richness in agricultural areas. PLoS ONE 10:e0134443.

    PubMed  PubMed Central  Google Scholar 

  • Heist K (2014) Assessing bat and bird fatality risk at wind farm sites using acoustic detectors (Doctoral dissertation). University of Minnesota, USA

    Google Scholar 

  • Huso MM, Dalthorp D, Dail D, Madsen L (2015) Estimating wind-turbine-caused bird and bat fatality when zero carcasses are observed. Ecol Appl 25:1213–1225

    PubMed  Google Scholar 

  • Institut National de l’Information Géographique et Forestière (2017) BD TOPO version 2.2

  • Jensen ME, Miller LA (1999) Echolocation signals of the bat Eptesicus serotinus recorded using a vertical microphone array: effect of flight altitude on searching signals. Behav Ecol Sociobiol 47:60–69.

    Google Scholar 

  • Kelm DH, Lenski J, Kelm V, Toelch U, Dziock F (2014) Seasonal bat activity in relation to distance to Hedgerows in an agricultural landscape in Central Europe and implications for wind energy development. Acta Chiropterol. 16:65–73.

    Google Scholar 

  • Koblitz JC (2018) Arrayvolution-using microphone arrays to study bats in the field. Can J, Zool

    Google Scholar 

  • Laranjeiro T, May R, Verones F (2018) Impacts of onshore wind energy production on birds and bats: recommendations for future life cycle impact assessment developments. J Life Cycle Assess, Int. https://doi.org/10.1007/s11367-017-1434-4

    Book  Google Scholar 

  • Long CV, Flint JA, Lepper PA (2011) Insect attraction to wind turbines: does colour play a role? Eur J Wildl Res 57:323–331.

    Google Scholar 

  • Loss SR, Will T, Marra PP (2015) Direct mortality of birds from anthropogenic causes. Annu Rev Ecol Evol Syst 46:99–120.

    Google Scholar 

  • Mackie IJ, Racey PA (2007) Habitat use varies with reproductive state in noctule bats (Nyctalus noctula): implications for conservation. Biol Conserv 140:70–77.

    Google Scholar 

  • Martin CM, Arnett EB, Stevens RD, Wallace MC (2017) Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation. J Mamm 98:378–385

    Google Scholar 

  • McGarigal K, Cushman S, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst

    Google Scholar 

  • Menzel JM, Menzel MA, Kilgo JC, Ford WM, Edwards JW, McCRACKEN GF (2005) Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina. J Wildl Manag 69:235–245.

    Google Scholar 

  • Miller LM, Keith DW (2018) Climatic impacts of wind power. Joule 2:2618–2632

    Google Scholar 

  • Millon L, Colin C, Brescia F, Kerbiriou C (2018) Wind turbines impact bat activity, leading to high losses of habitat use in a biodiversity hotspot. Ecol Eng 112:51–54.

    Google Scholar 

  • Minderman J, Gillis MH, Daly HF, Park KJ (2017) Landscape-scale effects of single- and multiple small wind turbines on bat activity. Conserv, Anim. https://doi.org/10.1111/acv.12331

    Book  Google Scholar 

  • Minderman J, Pendlebury CJ, Pearce-Higgins JW, Park KJ (2012) Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity. PLoS ONE 7:e41177

    CAS  PubMed  PubMed Central  Google Scholar 

  • NASA JPL, 2009. ASTER Global Digital Elevation Model. https://doi.org/10.5067/ASTER/ASTGTM.002

  • Newson SE, Evans HE, Gillings S, Jarrett D, Raynor R, Wilson MW (2017) Large-scale citizen science improves assessment of risk posed by wind farms to bats in southern Scotland. Biol Conserv 215:61–71

    Google Scholar 

  • Peixoto FP, Braga PHP, Mendes P (2018) A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecol. https://doi.org/10.1186/s12898-018-0174-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Piorkowski MD, O’Connell TJ (2010) Spatial pattern of summer bat mortality from collisions with wind turbines in mixed-grass prairie. Am Midl Nat 164:260–269.

    Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reers H, Hartmann S, Hurst J, Brinkmann R (2017) Activity at nacelle height over forest. Wind Energy Wildl Interact. Springer, Berlin, pp 79–98

    Google Scholar 

  • Reynolds DR, Chapman JW, Drake VA (2017) Riders on the wind: the aeroecology of insect migrants. In: Chilson PB, Frick WF, Kelly JF, Liechti F (eds) Aeroecology. Springer, Cham, pp 145–178.

    Google Scholar 

  • Rodrigues L, Bach L, Dubourg-Savage M-J, Karapandza B, Kovac D, Kervyn T, Dekker J, Kepel A, Bach P, Collins J, Harbusch C, Park K, Micevski J, Minderman J (2015) Guidelines for consideration of bats in wind farm projects: revision 2014. EUROBATS Publication Series. UNEP/EUROBATS, Bonn

    Google Scholar 

  • Roeleke M, Blohm T, Kramer-Schadt S, Yovel Y, Voigt CC (2016) Habitat use of bats in relation to wind turbines revealed by GPS tracking. Sci Rep. https://doi.org/10.1038/srep28961

    Article  PubMed  PubMed Central  Google Scholar 

  • Roeleke M, Bumrungsri S, Voigt CC (2018a) Bats probe the aerosphere during landscape-guided altitudinal flights. Mamm Rev 48:7–11

    Google Scholar 

  • Roeleke M, Teige T, Hoffmeister U, Klingler F, Voigt CC (2018b) Aerial-hawking bats adjust their use of space to the lunar cycle. Mov Ecol 6:11

    PubMed  PubMed Central  Google Scholar 

  • Roemer C, Coulon A, Disca T, Bas Y (2019) Bat sonar and wing morphology predict species vertical niche. J Acoust Soc Am 145:3242–3251

    PubMed  Google Scholar 

  • Roemer C, Disca T, Coulon A, Bas Y (2017) Bat flight height monitored from wind masts predicts mortality risk at wind farms. Biol Conserv 215:116–122.

    Google Scholar 

  • Rydell J, Bach L, Dubourg-Savage M-J, Green M, Rodrigues L, Hedenström A (2010) Bat mortality at wind turbines in Northwestern Europe. Acta Chiropterol 12:261–274.

    Google Scholar 

  • Santos H, Rodrigues L, Jones G, Rebelo H (2013) Using species distribution modelling to predict bat fatality risk at wind farms. Biol Conserv 157:178–186.

    Google Scholar 

  • Sordello R, Amsallem J, Bas Y, Billon L, Borner L, Comolet-Tirman J, Daloz A, Dugué AL, Guinard E, Julien JF, Lacoeuilhe A, Lombard A, Marmet J, Marx G, Ménard C, Paquier F, Reyjol Y, Schweigert N, Siblet JP, Thierry C, Vanpeene S, Vignon V (2019) Trame verte et bleue et espèces volantes. Note d’enjeux et de problématique, UMS Patrinat, Cerema, Cesco, Irstea LPO, MTES, 26 p

  • Thompson M, Beston JA, Etterson M, Diffendorfer JE, Loss SR (2017) Factors associated with bat mortality at wind energy facilities in the United States. Biol Conserv 215:241–245.

    PubMed  PubMed Central  Google Scholar 

  • Voigt CC, Currie SE, Fritze M, Roeleke M, Lindecke O (2018) Conservation strategies for bats flying at high altitudes. Bioscience 68:427–435

    Google Scholar 

  • Voigt CC, Kingston T (eds) (2016) Bats in the Anthropocene: conservation of bats in a changing world. Springer, Cham.

    Google Scholar 

  • Voigt CC, Lehnert LS, Petersons G, Adorf F, Bach L (2015) Wildlife and renewable energy: german politics cross migratory bats. Eur J Wildl Res 61:213–219.

    Google Scholar 

  • Wellig SD, Nusslé S, Miltner D, Kohle O, Glaizot O, Braunisch V, Obrist MK, Arlettaz R (2018) Mitigating the negative impacts of tall wind turbines on bats: vertical activity profiles and relationships to wind speed. PLoS ONE 13:e0192493.

    PubMed  PubMed Central  Google Scholar 

  • Zimmermann Teixeira F, Kindel A, Hartz SM, Mitchell S, Fahrig L (2017) When road-kill hotspots do not indicate the best sites for road-kill mitigation. J Appl Ecol. https://doi.org/10.1111/1365-2664.12870

    Article  Google Scholar 

  • Zuur A, Ieno E, Elphick C (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Google Scholar 

Download references

Acknowledgements

We would like to thank Sébastien Devos, Marie-Lilith Patou, Julien Mérot, Alexandre Haquart, Julien Tranchard, Philippe Ferragne, Matthieu Guyot, Antonin Dhellemme, Matthieu Lageard, Paul Gillot, François Huchin, Julien Renglet, Magali Argaud and Estelle Cleach for their important contributions to equipment design and installation, data collection and acoustic analysis. We also thank one anonymous reviewer for commenting on the manuscript and Richard Iodice for the English proofreading.

Funding

This study was a collaboration between Biotope and the Muséum national d’Histoire Naturelle in the form of a PhD thesis funded by Biotope and the Association Nationale de la Recherche et de la Technologie (Grant No. 2015/0838).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Roemer.

Ethics declarations

Conflict of interest

Biotope is an environmental consultancy involved in wind turbine impact assessment studies. Two of the authors, Charlotte Roemer and Thierry Disca, were employees at Biotope at the time of submission. Authors thus declare a conflict of interest. However, authors take complete responsibility for the integrity of the data and the accuracy of their analysis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 2573 kb)

Supplementary Material 2 (CSV 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roemer, C., Bas, Y., Disca, T. et al. Influence of landscape and time of year on bat-wind turbines collision risks. Landscape Ecol 34, 2869–2881 (2019). https://doi.org/10.1007/s10980-019-00927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00927-3

Keywords

Navigation