Skip to main content
Log in

Estimating wildlife utilization distributions using randomized shortest paths

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Incorporating hard and soft barriers into individual space-use measures in wildlife tracking studies remains an ongoing challenge in movement ecology.

Objectives

Randomized shortest paths are proposed as a new tool for estimating wildlife utilization distributions—termed the RSPUD.

Methods

The RSPUD model requires a single parameter (θ) which controls the trade-off between random exploration of the landscape and deterministic movement along the least-cost path. Synthetic data are used to demonstrate the flexibility of RSPUDs across a range of scenarious that could be encountered with wildlife tracking data. A case-study using GPS tracking data of an individual caribou (Rangifer tarandus) in British Columbia, Canada is used to demonstrate the method in an applied setting.

Results

The synthetic data examples highlight the properties of RSPUD across a range or scenarios. In the empirical data, we found that the RPSUD method more appropriately delineated individual space use and the avoidance of obvious barriers on the landscape in comparison to the Brownian bridge model.

Conclusions

The calculation of RSPUDs provides new opportunities for more sophisticated spatial analysis of individual measures of space use (home range and utilization distributions), by explicitly taking into consideration the role of hard and soft barriers constraining individual movement opportunities. The approach should be attractive to movement ecologists as it takes a similar approach to existing methods (e.g., Brownian bridges and biased random bridges). The method is made accessible to other researchers as part of the wildlifeTG R package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahearn SC, Dodge S, Simcharoen A, Xavier G, Smith JL (2017) A context-sensitive correlated random walk: a new simulation model for movement. Int J Geogr Inf Sci 31(5):867–883

    Google Scholar 

  • Avgar T, Potts JR, Lewis MA, Boyce MS (2016) Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol Evol 7(5):619–630 1011.1669v3

    Google Scholar 

  • Bateman AW, Lewis MA, Gall G, Manser MB, Clutton-Brock TH (2015) Territoriality and home-range dynamics in meerkats, Suricata suricatta: a mechanistic modelling approach. J Anim Ecol 84(1):260–271

    PubMed  Google Scholar 

  • Benhamou S (2011) Dynamic approach to space and habitat use based on biased random bridges. PLoS ONE 6(1):e14592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou S, Cornélis D (2010) Incorporating movement behavior and barriers to improve kernel home range space use estimates. J Wildl Manag 74(6):1353–1360

    Google Scholar 

  • Beyer HL, Gurarie E, Börger L, Panzacchi M, Basille M, Herfindal I, Van Moorter B, Lele RS (2014) ’You Shall Not Pass!’: quantifying barrier permeability and proximity avoidance by animals. J Anim Ecol 85(1):43–53

    PubMed  Google Scholar 

  • Calenge C (2006) The package “Adehabitat” for the R Software: a tool for the analysis of space and habitat use by animals. Ecol Model 197(3–4):516–519

    Google Scholar 

  • Clapp JG, Beck JL (2015) Evaluating distributional shifts in home range estimates. Ecol Evol 5(18):3869–3878

    PubMed  PubMed Central  Google Scholar 

  • Douglas DH (1994) Least-cost path in GIS using an accumulated cost surface and slopelines. Cartographica 31(3):37–51

    Google Scholar 

  • Fleming CH, Fagan WF, Mueller T, Olson KA, Leimgruber P, Calabrese JM (2015) A new autocorrelated kernel density estimator. Ecology 96(5):1182–1188

    CAS  PubMed  Google Scholar 

  • Fullman TJ, Joly K, Ackerman A (2017) Effects of environmental features and sport hunting on Caribou migration in Northwestern Alaska. Mov Ecol 5(1):1–11

    Google Scholar 

  • Gaspar P, Georges JY, Fossette S, Lenoble A, Ferraroli S, Le Maho Y (2006) Marine animal behaviour: neglecting ocean currents can lead us up the wrong track. Proc R Soc B Biol Sci 273(1602):2697–2702

    Google Scholar 

  • Harel R, Duriez O, Spiegel O, Fluhr J, Horvitz N, Getz WM, Bouten W, Sarrazin F, Hatzofe O, Nathan R (2016) Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales. Philos Trans R Soc B Biol Sci 371(1704):1–11

    Google Scholar 

  • Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing animal movements using Brownian bridges. Ecology 88(9):2354–2363

    PubMed  Google Scholar 

  • Keeley ATH, Beier P, Gagnon JW (2016) Estimating landscape resistance from habitat suitability: effects of data source and nonlinearities. Landscape Ecol 31(9):2151–2162

    Google Scholar 

  • Kivimäki I, Shimbo M, Saerens M (2014) Developments in the theory of randomized shortest paths with a comparison of graph node distances. Physica A 393:600–616

    Google Scholar 

  • Knight C, Kenward R, Gozlan R, Hodder K, Walls S, Lucas M (2009) Home range estimation within complex restricted environments: importance of method selection in detecting seasonal change. Wildl Res 36(3):213–224

    Google Scholar 

  • Kranstauber B, Kays R, Lapoint SD, Wikelski M, Safi K (2012) A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J Anim Ecol 81(4):738–46

    PubMed  Google Scholar 

  • Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales JM (2012) Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology 93(11):2336–2342

    PubMed  Google Scholar 

  • LaPoint S, Gallery P, Wikelski M, Kays R (2013) Animal behavior, cost-based corridor models, and real corridors. Landscape Ecol 28(8):1615–1630

    Google Scholar 

  • Lawler JJ, Ruesch AS, Olden JD, McRae BH (2013) Projected climate-driven Faunal movement routes. Ecol Lett 16(8):1014–1022

    CAS  PubMed  Google Scholar 

  • Le Roux M, Redon M, Archaux F, Long J, Vincent S, Luque S (2017) Conservation planning with spatially explicit models: a case for horseshoe bats in complex mountain landscapes. Landscape Ecol 32(5):1005–1021

    Google Scholar 

  • Lindsay JB, Dhun K (2015) Modelling surface drainage patterns in altered landscapes using LiDAR. Int J Geogr Inf Sci 29(3):397–411

    Google Scholar 

  • Long JA (2018) Modeling movement probabilities within heterogeneous spatial fields. J Spat Inf Sci 16(16):85–116

    Google Scholar 

  • Long JA, Nelson TA (2012) Time geography and wildlife home range delineation. J Wildl Manag 76(2):407–413

    Google Scholar 

  • Long JA, Nelson TA (2015) Home range and habitat analysis using dynamic time geography. J Wildl Manag 79(3):481–490

    Google Scholar 

  • Manly B, McDonald L, Thomas D, McDonald T, Erickson W (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Springer, Berlin

    Google Scholar 

  • Matthiopoulos J (2003) Supervised kernel smoothing for the estimation of spatial usage. Oikos 102(2):367–377

    Google Scholar 

  • Mattisson J, Persson J, Andrén H, Segerström P (2011) Temporal and spatial interactions between an obligate predator, the Eurasian Lynx (Lynx Lynx), and a facultative scavenger, the Wolverine (Gulo Gulo). Can J Zool 89(2):79–89

    Google Scholar 

  • McClure ML, Hansen AJ, Inman RM (2016) Connecting models to movements: testing connectivity model predictions against empirical migration and dispersal data. Landscape Ecol 31(7):1419–1432

    Google Scholar 

  • McGuire JL, Lawler JJ, McRae BH, Nuñez TA, Theobald DM (2016) Achieving climate connectivity in a fragmented landscape. Proc Natl Acad Sci USA 113(26):7195–7200

    CAS  PubMed  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724

    PubMed  Google Scholar 

  • Moorcroft PR, Lewis MA, Crabtree RL (2006) Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. Proc R Soc B Biol Sci 273(1594):1651–1659

    Google Scholar 

  • Morales J, Haydon D, Frair J, Holsinger KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85(9):2436–2445

    Google Scholar 

  • Neumann W, Martinuzzi S, Estes AB, Pidgeon AM, Dettki H, Ericsson G, Radeloff VC (2015) Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov Ecol 3(1):1–13

    Google Scholar 

  • Panzacchi M, Van Moorter B, Strand O, Saerens M, Kivimäki I, St Clair CC, Herfindal I, Boitani L (2016) Predicting the continuum between corridors and barriers to animal movements using step selection functions and randomized shortest paths. J Anim Ecol 85(1):32–42

    PubMed  Google Scholar 

  • Patterson TA, Basson M, Bravington MV, Gunn JS (2009) Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J Anim Ecol 78(6):1113–1123

    PubMed  Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23(2):87–94

    PubMed  Google Scholar 

  • Powell R, Mitchell MS (2012) What is a home range? J Mammal 93(4):948–958

    Google Scholar 

  • Pullinger MG, Johnson CJ (2010) Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecol 25(10):1547–1560

    Google Scholar 

  • Righton D, Mills C (2006) Application of GIS to investigate the use of space in coral reef fish: a comparison of territorial behaviour in two red sea butterflyfishes. Int J Geogr Inf Sci 20(2):215–232

    Google Scholar 

  • Saerens M, Achbany Y, Fouss F, Yen L (2009) Randomized shortest-path problems: two related models. Neural Comput 21:2363–2404

    PubMed  Google Scholar 

  • Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, Cabot D, Cruz S, Proaño C, Takekawa JY, Newman SH, Waldenström J, Bengtsson D, Kays R, Wikelski M, Bohrer G (2013) Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov Ecol 1(1):4–5

    PubMed  PubMed Central  Google Scholar 

  • Sawyer SC, Epps CW, Brashares JS (2011) Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? J Appl Ecol 48(3):668–678

    Google Scholar 

  • Schoby GP, Keeley ER (2011) Home range size and foraging ecology of bull trout and westslope cutthroat trout in the Upper Salmon River Basin, Idaho. Trans Am Fish Soc 140(3):636–645

    Google Scholar 

  • Schumaker NH, Brookes A (2018) HexSim: a modeling environment for ecology and conservation. Landscape Ecol 33(2):197–211

    Google Scholar 

  • Signer J, Fieberg J, Avgar T (2017) Estimating utilization distributions from fitted step-selection functions. Ecosphere 8(4):e01771

    Google Scholar 

  • Smulders M, Nelson TA, Jelinski DE, Nielsen SE, Stenhouse GB, Laberee K (2012) Quantifying spatial-temporal patterns in wildlife ranges using STAMP: a grizzly bear example. Appl Geogr 35(1–2):124–131

    Google Scholar 

  • Song Y, Miller HJ (2014) Simulating visit probability distributions within planar space-time prisms. Int J Geogr Inf Sci 28(1):104–125

    CAS  Google Scholar 

  • Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC (2015) Shared decision-making drives collective movement in wild baboons. Science 348(6241):1358–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Technitis G, Othman W, Safi K, Weibel R (2015) From A to B, randomly: a point-to-point random trajectory generator for animal movement. Int J Geogr Inf Sci 29(6):912–934

    Google Scholar 

  • Tracey JA, Sheppard J, Zhu J, Wei F, Swaisgood RR, Fisher RN (2014) Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation. PLoS ONE 9(7):e101205

    PubMed  PubMed Central  Google Scholar 

  • Turchin P (1996) Fractal analyses of animal movement: a critique. Ecology 77(7):2086–2090

    Google Scholar 

  • Van Etten J (2015) Gdistance: distances and routes on geographical grids (v 1.1-9). Tech Rep, R Foundation for Statistical Computing/R Foundation for Statistical Computing

  • van Toor ML, Kranstauber B, Newman SH, Prosser DJ, Takekawa JY, Technitis G, Weibel R, Wikelski M, Safi K (2018) Integrating animal movement with habitat suitability for estimating dynamic landscape connectivity. Landscape Ecol 33(6):879–893

    Google Scholar 

  • Walter WD, Onorato DP, Fischer JW (2015) Is there a single best estimator? Selection of home range estimators using area-under-the-curve. Mov Ecol 3(1):1–11

    Google Scholar 

  • Wang IJ, Savage WK, Shaffer HB (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18(7):1365–1374

    PubMed  Google Scholar 

  • Wulder M, White J, Cranny M, Hall R, Luther J, Beaudoin A, Goodenough D, Dechka J (2008) Monitoring Canada’s forests-part 1: completion of the EOSD land cover project. Can J Remote Sens 34(6):549–562

    Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27(6):777–797

    Google Scholar 

  • Zeller KA, McGarigal K, Beier P, Cushman SA, Vickers TW, Boyce WM (2014) Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landscape Ecol 29(3):541–557

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed A. Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J.A. Estimating wildlife utilization distributions using randomized shortest paths. Landscape Ecol 34, 2509–2521 (2019). https://doi.org/10.1007/s10980-019-00883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00883-y

Keywords

Navigation