Skip to main content

Advertisement

Log in

Using a species-centered approach to predict bird community responses to habitat fragmentation

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The relative importance of habitat fragmentation versus loss on species richness has been much debated. However, recent findings that fragmentation effects are relatively weak may be an artifact of using human-classified vegetation rather than adopting a species-eye view to measure landscape structure.

Objectives

We present the first example of a species-centered approach for examining fragmentation effects on ecological communities. We tested hypotheses relating to the relative influence of habitat amount, configuration, and focal patch size on southwest Oregon bird communities.

Methods

We used boosted regression trees based on unclassified Landsat TM to create ‘stacked’ species distribution models (S-SDMs) for a large pool of avian species and nested subset of habitat specialists. We tested the relative importance of S-SDM-derived habitat amount, patch number, mean patch size, and focal patch size in explaining species richness. We compared this approach to metrics based on generic land-cover classifications.

Results

Species-centered models had greater statistical support than land-cover models. In species-centered models, species richness increased as a function of focal patch size and decreased with patch number, supporting the hypothesis of negative effects of fragmentation per se. Land-cover based models indicated inconsistent support for habitat amount but a positive effect of fragmentation.

Conclusion

The species-centered approach identified habitat configuration relationships obscured by land-cover based approaches. While positive land-cover based fragmentation effects were consistent with recent synthesis work, the species-centered approach consistently revealed strong negative effects of fragmentation matching traditional theoretical expectations. S-SDMs may offer promise for generalizing ecological theory to real species distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander JD, Ralph CJ, Hollinger K, Hogoboom B (2004) Using a wide-scale landbird monitoring network to determine landbird distribution and productivity in the Klamath Bioregion. In: Mergenthaler KL, Williams JE, Jules J (eds) Proceedings of the second conference on Klamath-Siskiyou ecology. Siskiyou Field Institute, Cave Junction, OR, pp 33–41

    Google Scholar 

  • Altman B, Stephens J (2012) Land manager’s guide to bird habitat and populations in oak ecosystems of the Pacific Northwest. American Bird Conservancy and Klamath Bird Observatory

  • Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 355–366

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    Article  CAS  PubMed  Google Scholar 

  • Belmaker J, Jetz W (2012) Regional pools and environmental controls of vertebrate richness. Am Nat 179:512–523

    Article  PubMed  Google Scholar 

  • Betts MG, Forbes GJ, Diamond AW (2007) Thresholds in songbird occurrence in relation to landscape structure. Conserv Biol 21:1046–1058

    Article  PubMed  Google Scholar 

  • Betts MG, Fahrig L, Hadley AS, Halstead KE, Bowman J, Robinson WD, Wiens JA, Lindenmayer DB (2014) A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37:517–527

    Article  Google Scholar 

  • Betts MG, Gutzwiller KJ, Smith MJ, Robinson WD, Hadley AS (2015) Improving inferences about functional connectivity from animal translocation experiments. Landscape Ecol 30:585–593

    Article  Google Scholar 

  • Betts MG, Wolf C, Ripple WJ, Phalan B, Millers KA, Duarte A, Butchart SH, Levi T (2017) Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547:441–444

    Article  CAS  PubMed  Google Scholar 

  • Bivand R, Hauke J, Kossowski T (2011) Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geogr Anal 45(2):150–179

    Article  Google Scholar 

  • Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63(18):1–36

    Article  Google Scholar 

  • Bjornstad ON (2016) ncf: Spatial nonparametric covariance functions. R package version 1.1-7. https://CRAN.R-project.org/package=ncf

  • Bowman J (2003) Is dispersal distance of birds proportional to territory size? Can J Zool 81:195–202

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Calabrese JM, Certain G, Kraan C, Dormann CF (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob Ecol Biogeogr 23:99–112

    Article  Google Scholar 

  • Comfort EJ, Clark DA, Anthony RG, Bailey J, Betts MG (2016) Quantifying edges as gradients at multiple scales improves habitat selection models for northern spotted owl. Landscape Ecol 31:1227–1240

    Article  Google Scholar 

  • Cushman SA, Evans JS, McGarigal K, Kiesecker JM (2010) Toward Gleasonian landscape ecology: from communities to species, from patches to pixels. Res Pap RMRS-RP-84 Fort Collins CO US Dep Agric For Serv Rocky Mt Res Stn 12 p, 84

  • Cushman SA, McKelvey KS, Flather CH, McGarigal K (2008) Do forest community types provide a sufficient basis to evaluate biological diversity? Front Ecol Environ 6:13–17

    Article  Google Scholar 

  • De Camargo RX, Boucher-Lalonde V, Currie DJ (2018) At the landscape level, birds respond strongly to habitat amount but weakly to fragmentation. Divers Distrib 24:629–639

    Article  Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514

    Article  Google Scholar 

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170

    Article  Google Scholar 

  • Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL (2013) Conceptual domain of the matrix in fragmented landscapes. Trends Ecol Evol 28:605–613

    Article  PubMed  Google Scholar 

  • Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat JP, Guisan A (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib 17:1122–1131

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  PubMed  Google Scholar 

  • Elkin CM, Possingham H (2008) The role of landscape-dependent disturbance and dispersal in metapopulation persistence. Am Nat 172:563–575

    Article  PubMed  Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Evans JS, Cushman SA (2009) Gradient modeling of conifer species using random forests. Landscape Ecol 24:673–683

    Article  Google Scholar 

  • Fahrig L (1998) When does fragmentation of breeding habitat affect population survival? Ecol Model 105:273–292

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E, Currie DJ, Eigenbrod F, Ford AT, Harrison SP, Jaeger JA, Koper N (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230:179–186

    Article  Google Scholar 

  • Fischer J, Lindenmayer D (2006) Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. Oikos 112:473–480

    Article  Google Scholar 

  • Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am Nat 159:40–56

    Article  PubMed  Google Scholar 

  • Fletcher Jr RJ (2009) Does attraction to conspecifics explain the patch-size effect? An experimental test. Oikos 118:1139–1147

    Article  Google Scholar 

  • Fletcher Jr RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FP (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 226:9–15

    Article  Google Scholar 

  • Franklin JF, Dyrness C (1988) Natural vegetation of Oregon and Washington. Oregon State University Press, Corvallis

    Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat 28:337–407

    Article  Google Scholar 

  • Gleason HA (1936) The individualistic concept of the plant association. Am Midl Nat 21:92–110

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1(2):e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadley AS, Frey SJK, Robinson WD, Kress WJ, Betts MG (2014) Tropical forest fragmentation limits pollination of a keystone understory herb. Ecology 95:2202–2212

    Article  PubMed  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Article  Google Scholar 

  • Hanski I, Zurita GA, Bellocq MI, Rybicki J (2013) Species–fragmented area relationship. Proc Natl Acad Sci 110:12715–12720

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison S, Cornell H (2008) Toward a better understanding of the regional causes of local community richness. Ecol Lett 11:969–979

    Article  PubMed  Google Scholar 

  • Hijmans RJ (2016) Raster: geographic data analysis and modeling. R package version 2.5-8. https://CRAN.R-project.org/package=raster

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) dismo: species distribution modeling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo

  • Holmes RT, Sherry TW (1988) Assessing population trends of New Hampshire forest birds: local vs. regional patterns. Auk 105:756–768

    Article  Google Scholar 

  • Kennedy RE, Cohen WB, Kirschbaum AA, Haunreiter E (2007) Protocol for Landsat-based monitoring of landscape dynamics at North Coast and Cascades Network parks. US Geological Survey Techniques and Methods 2-G1, Reston, VA, USA

  • Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob Ecol Biogeogr 17:59–71

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Metlen KL, Skinner CN, Olson DR, Nichols C, Borgias D (2018) Regional and local controls on historical fire regimes of dry forest and woodlands in the Rogue Basin, Oregon, USA. Forest Ecol Manag 430:43–58

    Article  Google Scholar 

  • Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa M (2017) fmsb: functions for medical statistics book with some demographic data. R package version 0.6.0. https://CRAN.R-project.org/package=fmsb

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SL, Hoskins AJ, Lysenko I, Phillips HR, Burton VJ (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291

    Article  CAS  PubMed  Google Scholar 

  • O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536

    Article  Google Scholar 

  • Pellissier L, Espíndola A, Pradervand JN, Dubuis A, Pottier J, Ferrier S, Guisan A (2013) A probabilistic approach to niche-based community models for spatial forecasts of assemblage properties and their uncertainties. J Biogeogr 40:1939–1946

    Google Scholar 

  • Pfeifer M, Lefebvre V, Gardner T, Arroyo‐Rodriguez V, Baeten L, Banks‐Leite C, Barlow J, Betts MG, Brunet J, Cerezo A, Cisneros LM (2014) BIOFRAG—a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecol Evol 4:1524–1537

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA, Wearn OR, Marsh CJ, Butchart SH, Arroyo-Rodríguez V, Barlow J, Cerezo A, Cisneros L (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Preston FW (1948) The commonness, and rarity, of species. Ecology 29:254–283

    Article  Google Scholar 

  • PRISM Climate Group Oregon State University (2004). http://prism.oregonstate.edu. Created 4 Feb 2004

  • Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci 105:20770–20775

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing

  • Ralph CJ, Geupel GR, Pyle P, et al (1993) Handbook of field methods for monitoring landbirds. USDA Forest Service/UNL Faculty Publications

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE (2008) Disintegration of the ecological community. Am Nat 172:741–750

    Article  PubMed  Google Scholar 

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinform 12:77

    Article  Google Scholar 

  • Saura S, Bodin Ö, Fortin MJ (2014) EDITOR’S CHOICE: stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51:171–182

    Article  Google Scholar 

  • Sawyer JO (2006) Northwest California: a natural history. University of California Press, Berkeley

    Google Scholar 

  • Schmidt KA, Johansson J, Betts MG (2015) Information-mediated allee effects in breeding habitat selection. Am Nat 186:E162–E171

    Article  PubMed  Google Scholar 

  • Shirley SM, Yang Z, Hutchinson RA, Alexander JD, McGarigal K, Betts MG (2013) Species distribution modelling for the people: unclassified landsat TM imagery predicts bird occurrence at fine resolutions. Divers Distrib 19:855–866

    Article  Google Scholar 

  • Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 24:1271–1285

    Article  Google Scholar 

  • Stephens JL, Mohren SR, Alexander JD, Sarr DA, Irvine KM (2010) Klamath Network landbird monitoring protocol. National Park Service, Fort Collins, CO

    Google Scholar 

  • Symonds MR, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Thornton DH, Branch LC, Sunquist ME (2011) The influence of landscape, patch, and within-patch factors on species presence and abundance: a review of focal patch studies. Landscape Ecol 26:7–18

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • US Geological Survey (2011) US Geological Survey Gap Analysis Program, 20160513, GAP/LANDFIRE National Terrestrial Ecosystems. https://gapanalysis.usgs.gov/gaplandcover/data/download/

  • US Geological Survey, EROS center (1982) Landsat TM 4 and 5; Data available from the US Geological Survey. http://earthexplorer.usgs.gov/

  • Valente JJ, Betts MG (2018) Response to fragmentation by avian communities is mediated by species traits. Divers Distrib 25:48–60

    Article  Google Scholar 

  • Villard M-A, Metzger JP (2014) REVIEW: beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318

    Article  Google Scholar 

  • Villard M-A, Trzcinski MK, Merriam G (1999) Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv Biol 13:774–783

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • Wilson KA, Westphal MI, Possingham HP, Elith J (2005) Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol Conserv 122:99–112

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank field assistants Jim DeStaebler, Rob Fowler, Dave Haupt, Aaron Holmes, Frank Lospalluto, Kevin Sands, Dave Spangenburg, Ian Ausprey, and Felicity Newell, as well as Jonathon Valente, Noelia Volpe, Jim Rivers, Kyle Pritchard, and Saskia Halstead for additional support. Access to study sites and logistical support was provided by Bureau of Land Management Medford District, City of Ashland Parks and Recreation, City of Medford Parks and Recreation, Douglas County Parks Department, Lomakatsi Restoration Project, The Nature Conservancy, and U.S. Fish and Wildlife Partners for Fish & Wildlife Program. We are grateful to the private landowners who allowed access to their property. Data from long-term monitoring efforts accessed from Avian Knowledge Northwest, a regional node of the Avian Knowledge Network. This study was supported by grants from National Science Foundation (NSF-DEB-1457837) to M.G. Betts and A.S. Hadley, and from Oregon State University to K.E. Halstead. Klamath Bird Observatory completed the data collection in partnership with American Bird Conservancy as part of ongoing conservation science efforts led by Bob Altman and funded by the Neotropical Migratory Bird Conservation Act.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katherine E. Halstead or Matthew G. Betts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halstead, K.E., Alexander, J.D., Hadley, A.S. et al. Using a species-centered approach to predict bird community responses to habitat fragmentation. Landscape Ecol 34, 1919–1935 (2019). https://doi.org/10.1007/s10980-019-00860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00860-5

Keywords

Navigation