Skip to main content

Advertisement

Log in

Connectedness of habitat fragments boosts conservation benefits for butterflies, but only in landscapes with little cropland

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Global change pressures (GCPs) imperil species and associated ecosystem functions, but studies investigating interactions of landscape-scale pressures remain scarce. Loss of species-rich habitat and agricultural expansion are major threats for biodiversity, but if or how these factors interactively determine community-level shifts and conservation outcomes remains unclear.

Objectives

We tested whether matrix simplification (dominance of cropland) and reduced connectivity (i.e. landscape-scale habitat loss) either additively, synergistically or antagonistically cause community shifts in butterflies, a group of high conservation relevance.

Methods

We surveyed butterflies on 30 small calcareous grassland fragments (< 1 ha) in Central Germany, representing independent gradients in grassland connectivity (an index combining grassland area and proximity), and matrix quality (landscape proportion of cropland). Using proportional odds logistic regression, we assessed whether connectivity and matrix quality interactively altered the distribution of Red List statuses, and assessed effects of local scale management (mowing, grazing, short-term abandonment).

Results

We found synergistic, conservation relevant effects: Connectivity boosted the proportion of red-listed species from 20 to 52% in crop land poor landscapes, but not in crop land rich landscapes, particularly driven by endangered and critically endangered species. Grazed sites had the lowest species richness, abundance, and proportions of conservation relevant butterflies.

Implications

Mitigation measures targeting one landscape-scale pressure only may be inefficient, particularly for red-listed species. Increasing habitat connectivity bolsters butterfly communities and potential pollination services, but only if accompanied by measures to soften the matrix. Hence, halting biodiversity losses needs better understanding and implementation of complex conservation measures at the landscape scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ås S (1999) Invasion of matrix species in small habitat patches. Conserv Ecol 3:1

    Article  Google Scholar 

  • Ausden M, Hall M, Pearson P, Strudwick T (2005) The effects of cattle grazing on tall-herb fen vegetation and molluscs. Biol Conserv 122:317–326

    Article  Google Scholar 

  • Binot-Hafke, M., Balzer, S., Becker, N., Gruttke, H., Haupt, H., Hofbauer, N., Ludwig, G., Matzke-Hajek, G., & Strauch, M. (2011) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 3: Wirbellose Tiere (Teil 1)

  • Brückmann SV (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809

    Article  Google Scholar 

  • Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809

    Article  Google Scholar 

  • Conradt L, Roper TJ, Thomas CD (2001) Dispersal behaviour of individuals in metapopulations of two british butterflies. Oikos 95:416–424

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evolut 22:489–496

    Article  Google Scholar 

  • Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart

    Google Scholar 

  • Ernst LM, Tscharntke T, Batáry P (2017) Grassland management in agricultural vs. forested landscapes drives butterfly and bird diversity. Biol Conserv 216:51–59

    Article  Google Scholar 

  • Fernandez-Chacon A, Stefanescu C, Genovart M, Ferna A, Turco M, Oro D, Nichols JD, Hines JE, Pa F (2014) Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features. J Anim Ecol 83(1):276–285

    Article  PubMed  Google Scholar 

  • Filz KJ, Engler JO, Stoffels J, Weitzel M, Schmitt T (2013) Missing the target? a critical view on butterfly conservation efforts on calcareous grasslands in south-western Germany. Biodivers Conserv 22:2223–2241

    Article  Google Scholar 

  • Garve E (2004) Rote Liste und Florenliste der Farn- und Blütenpflanzen in Niedersachsen und Bremen—5. Fassung, Stand 1.3. 2004. Informationsdienst Naturschutz Niedersachsen 1:1–76

    Google Scholar 

  • González-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyörgyi H, Woyciechowski M, Vilà M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530

    Article  PubMed  Google Scholar 

  • Habel JC, Schmitt T (2018) Vanishing of the common species: empty habitats and the role of genetic diversity. Biol Conserv 218:211–216

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Blasius B, Borer ET, Chase JM, Stanley W, Downing JA, Klemens B, Christopher E, Seabloom EW, Hodapp D, Larsen S, Lewandowska AM, Van De Waal DB, Ryabov AB (2018) Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J Appl Ecol 55(1):169–184

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S, Hothorn MT (2016) Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna

    Google Scholar 

  • Kormann U, Rösch V, Batáry P, Tscharntke T, Orci KM, Samu F, Scherber C (2015) Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers Distrib 21:1204–1217

    Article  Google Scholar 

  • Kormann UG, Hadley AS, Tscharntke T, Betts MG, Robinson WD, Scherber C (2018) Primary rainforest amount at the landscape scale mitigates bird biodiversity loss and biotic homogenization. J Appl Ecol 55(3):1288–1298

    Article  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900

    Article  Google Scholar 

  • Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the Glanville Fritillary butterfly, Melitea cinxia. J Appl Ecol 65:791–801

    Article  Google Scholar 

  • Lobenstein, U. (2004). Rote Liste der in Niedersachsen und Bremen gefährdeten Großschmetterlinge mit Gesamtartenverzeichnis: 2. Fassung, Stand 1.8. 2004. Nieders. Landesamt für Ökologie (NLÖ)-Abt. Naturschutz, 2004

  • Loos J, Kuussaari M, Ekroos J, Hanspach J, Fust P, Jackson L, Fischer J (2015) Changes in butterfly movements along a gradient of land use in farmlands of Transylvania (Romania). Landscape Ecol 30:625–635

    Article  Google Scholar 

  • Öckinger E, Eriksson AK, Smith HG (2006) Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol Conserv 133:291–300

    Article  Google Scholar 

  • Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979

    PubMed  Google Scholar 

  • Öckinger E, Bergman K-O, Franzén M, Kadlec T, Krauss J, Kuussaari M, Pöyry J, Smith HG, Steffan-Dewenter I, Bommarco R (2011) The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecol 27:121–131

    Article  Google Scholar 

  • Pollard E (1977) A method for assessing changes in the abundance of butterflies. Biol Conserv 12:115–134

    Article  Google Scholar 

  • Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010a) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010b) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Sala OE, Iii FSC, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Poff NL, Sykes MT, Walker BH, Walker M (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Sang A, Teder T, Helm A, Pärtel M (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conserv 143(6):1405–1413

    Article  Google Scholar 

  • Scherber C (2015) Insect responses to interacting global change drivers in managed ecosystems. Curr Opin Insect Sci 11:56–62

    Article  PubMed  Google Scholar 

  • Schtickzelle N, Mennechez G, Baguette M (2006) Dispersal depression with habitat fragmentation. Ecology 87:1057–1065

    Article  PubMed  Google Scholar 

  • Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Ingolf K, Moora M, Nielsen A, Ohlem R, Petanidou T, Potts SG, Pyˇ P, Stout JC, Sykes MT, Tscheulin T, Winter M, Zobel M, Settele J (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795

    PubMed  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3(5):449–456

    Article  Google Scholar 

  • Supp SR, Ernest SKM (2014) Species-level and community-level responses to disturbance: a cross-community analysis. Ecology 95:1717–1723

    Article  PubMed  Google Scholar 

  • Thomas JA (1991) Rare species conservation: case studies of European butterflies. The scientific management of temperate communities for conservation: the 31st Symposium of the British Ecological Society Southampton 1989, pp. 149–197

  • Thomas JA (2016) Butterfly communities under threat. Science 353(6296):216–218

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318

    Article  Google Scholar 

  • van Swaay CAM, WallisDeVries MF, Poschlod P (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Springer, New York

    Book  Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Jeffcoate G, Harding P, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414(6859):65

    Article  CAS  PubMed  Google Scholar 

  • Zulka KP, Abensperg-Traun M, Milasowszky N, Bieringer G, Gereben-Krenn B-A, Holzinger W, Hölzler G, Rabitsch W, Reischütz A, Querner P, Sauberer N, Schmitzberger I, Willner W, Wrbka T, Zechmeister H (2013) Species richness in dry grassland patches of eastern Austria: A multi-taxon study on the role of local, landscape and habitat quality variables. Agric Ecosyst Environ 182:25–36

    Article  Google Scholar 

Download references

Acknowledgements

We thank three Reviewers and Adam Hadley for their input on a previous version of this article. Financial support to UGK by the DFG Research Training Group 1644 (Scaling Problems in Statistics), to PB by the German Research Foundation (Grant No. DFG BA4438/1-1) and to VR by the MWK graduate school “Biodiversität und Gesellschaft” is acknowledged. The Division of Conservation Biology, University of Bern, provided logistical support during the writing stage of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs G. Kormann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kormann, U.G., Scherber, C., Tscharntke, T. et al. Connectedness of habitat fragments boosts conservation benefits for butterflies, but only in landscapes with little cropland. Landscape Ecol 34, 1045–1056 (2019). https://doi.org/10.1007/s10980-019-00835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00835-6

Keywords

Navigation