Skip to main content

Advertisement

Log in

Drivers of forest fire occurrence in the cultural landscape of Central Europe

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Wildfires in temperate Central Europe have traditionally been perceived as a mere consequence of human activity without any relevance to natural forest development, despite their documented frequent occurrence. As a result, knowledge about local fire ecology and patterns of wildfire occurrence in the landscape is lacking.

Objectives

We aimed to reveal the factors influencing the spatial distribution of forest fires in the Czech Republic as a model area for the broader region. Specifically, we aimed to (1) find out which factors influence the occurrence and frequency of the forest fires at the country scale and in a selected fire-prone region; (2) examine the relationship of lightning strikes and their polarity with wildfire incidence; (3) identify the conditions determining areas with naturally driven fire-prone conditions.

Methods

We took data on 15,985 wildfire records and explored their spatial distribution using GIS layers of human, topographic, climatic and vegetation composition factors. We analysed the data using GLM and hierarchical partitioning methods.

Results

Wildfire occurrence was controlled mostly by environmental factors whereas wildfire frequency was strongly driven by human factors. In the selected fire-prone region, the effect of environmental factors was even more pronounced and wildfire frequency was also driven, albeit marginally, by lightning strikes of positive polarity.

Conclusion

The pattern of wildfire occurrence in the Czech Republic was similar also to those from regions where wildfire is considered a natural part of local ecosystems. We identified the areas with natural fire-prone conditions which probably led to the development of local fire-adapted ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrams MD (1992) Fire and the development of oak forests. Bioscience 42:346–353

    Article  Google Scholar 

  • Adámek M, Bobek P, Hadincová V, Wild J, Kopecký M (2015) Forest fires within a temperate landscape: a decadal and millennial perspective from a sandstone region in Central Europe. For Ecol Manag 336:81–90

    Article  Google Scholar 

  • Agee JK (1998) Fire and pine ecosystems. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge

    Google Scholar 

  • Albers J (2012) Comparative analysis of the forest fire situation in Central-Eastern Europe, Master Thesis. BOKU, Vienna, Austria

  • Angelstam PK (1998) Maintaining and restoring biodiversity in European boreal forests by developing natural disturbance regimes. J Veg Sci 9:593–602

    Article  Google Scholar 

  • Angelstam P, Kuuluvainen T (2004) Boreal forest disturbance regimes, successional dynamics and landscape structures—a European perspective. Ecol Bull 51:117–136

    Google Scholar 

  • Ascoli D, Vacchiano G, Maringer J, Bovio G, Conedera M (2015) The synchronicity of masting and intermediate severity fire effects favors beech recruitment. For Ecol Manag 353:126–135

    Article  Google Scholar 

  • Avila-Flores D, Pompa-Garcia M, Antonio-Nemiga X, Rodriguez-Trejo DA, Vargas-Perez E, Santillan-Perez J (2010) Driving factors for forest fire occurrence in Durango State of Mexico: a geospatial perspective. Chin Geogr Sci 20:491–497

    Article  Google Scholar 

  • Ballabio C, Panagos P, Monatanarella L (2016) Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 261:110–123

    Article  Google Scholar 

  • Bobek P, Svobodová HS, Werchan B, Švarcová MG, Kuneš P (2017) Human-induced changes in fire regime and subsequent alteration of the sandstone landscape of Northern Bohemia (Czech Republic). The Holocene 28:427–443

    Article  Google Scholar 

  • Boerner REJ (1981) Forest structure dynamics following wildfire and prescribed burning in the New Jersey pine barrens. Am Midl Nat 105:321–333

    Article  Google Scholar 

  • Brose PH, Dey DC, Phillips RJ, Waldrop T (2013) A meta-analysis of the fire-oak hypothesis: does prescribed burning promote oak reproduction in Eastern North America? For Sci 59:322–334

    Google Scholar 

  • Cardille JA, Ventura SJ (2001) Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol Appl 11:111–127

    Article  Google Scholar 

  • Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504

    Google Scholar 

  • Clark J, Merkt J (1989) Post-glacial fire, vegetation, and human history on the northern alpine forelands, south-western Germany. J Ecol 77:897–925

    Article  Google Scholar 

  • Clark JS, Royall PD (1996) The role of fire during climate change in an eastern deciduous forest at Devil’s Bathtub, New York. Ecology 77:2148–2166

    Article  Google Scholar 

  • Delarze R, Caldelari D, Hainard P (1992) Effects of fire on forest dynamics in southern Switzerland. J Veg Sci 3:55–60

    Article  Google Scholar 

  • Díaz-Delgado R, Lloret F, Pons X (2004) Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landscape Ecol 19:731–745

    Article  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. No title. Ulmer, Stuttgart

    Google Scholar 

  • Engelmark O (1993) Early post-fire tree regeneration in a Picea-Vaccinium Forest in Northern Sweden. J Veg Sci 4:791–794

    Article  Google Scholar 

  • Feurdean A, Florescu G, Vannière B, Tanţău I, O’Hara RB, Pfeiffer M, Hutchinson SM, Gałka M, Moskal-del Hoyo M, Hickler T (2017) Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. For Ecol Manag 389:15–26

    Article  Google Scholar 

  • Flannigan M, Stocks B, Wotton B (2000) Climate change and forest fires. Sci Total Environ 262:221–229

    Article  CAS  PubMed  Google Scholar 

  • Flannigan MD, Wotton BM (1991) Lightning-ignited forest fires in northwestern Ontario. Can J For Res 21:277–287

    Article  Google Scholar 

  • Flatley WT, Lafon CW, Grissino-Mayer HD (2011) Climatic and topographic controls on patterns of fire in the southern and central Appalachian Mountains. Landscape Ecol, USA

    Google Scholar 

  • Futao G, Su Z, Wang G, Sun L, Lin F, Liu A (2016) Wildfire ignition in the forests of southeast China: identifying drivers and spatial distribution to predict wildfire likelihood. Appl Geogr 66:12–21

    Article  Google Scholar 

  • Ganteaume A, Camia A, Jappiot M, San-Miguel-Ayanz J, Long-Fournel M, Lampin C (2013) A review of the main driving factors of forest fire ignition over Europe. Environ Manag 51:651–662

    Article  Google Scholar 

  • Granström A (1993) Spatial and temporal variation in lightning ignitions in Sweden. J Veg Sci 4:737–744

    Article  Google Scholar 

  • Gromtsev A (2002) Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fenn 36:41–55

    Article  Google Scholar 

  • Huotari N, Tillman-Sutela E, Pasanen J, Kubin E (2008) Ash-fertilization improves germination and early establishment of birch (Betula pubescens Ehrh.) seedlings on a cut-away peatland. For Ecol Manag 255:2870–2875

    Article  Google Scholar 

  • Kalabokidis KD, Konstantinidis P, Vasilakos C (2002) GIS analysis of physical and human impact on wildfire patterns. In: Viegas DX (ed) Proceedings of IV international conference on forest fire research. 2002 wildlife fire safety summit, Luso-Coimbra, Port, 18–23 November 2002. Millpress, Rotterdam, pp 1–13

  • Kula E, Jankovská Z (2013) Forest fires and their causes in the Czech Republic (1992–2004). J For Sci 59:41–53

    Article  Google Scholar 

  • Landis RM, Gurevitch J, Fox GA, Fang W, Taub DR (2005) Variation in recruitment and early demography in Pinus rigida following crown fire in the pine barrens of Long Island, New York. J Ecol 93:607–617

    Article  Google Scholar 

  • Larjavaara M, Kuuluvainen T, Rita H (2005) Spatial distribution of lightning-ignited forest fires in Finland. For Ecol Manag 208:177–188

    Article  Google Scholar 

  • Latham D, Williams E (2001) Lightning and forest fires. In: Johnson EA, Miyanishi K (eds) Forest fires: behavior and ecological effects. Academic Press, San Diego, pp 375–418

    Chapter  Google Scholar 

  • Lecomte N, Simard M, Bergeron Y, Larouche A, Asnong H, Richard PJH (2005) Effects of fire severity and initial tree composition on understorey vegetation dynamics in a boreal landscape inferred from chronosequence and paleoecological data. J Veg Sci 16:665–674

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709

    Article  Google Scholar 

  • Löw J, Novák J (2008) Typologické členění krajin České republiky—typological subdivision of landscapes in the Czech Republic. Urban a územní Rozv XI:19–23

    Google Scholar 

  • Mac Nally R, Walsh CJ (2004) Hierarchical partitioning public-domain software. Biodivers Conserv 13:659–660

    Article  Google Scholar 

  • Marozas V, Racinskas J, Bartkevicius E (2007) Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. For Ecol Manag 250:47–55

    Article  Google Scholar 

  • Martínez-Fernández J, Chuvieco E, Koutsias N (2013) Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat Hazards Earth Syst Sci 13:311–327

    Article  Google Scholar 

  • Miranda BR, Sturtevant BR, Stewart SI, Hammer RB (2012) Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA. Int J Wildl Fire 21:141–154

    Article  Google Scholar 

  • Molinari C, Lehsten V, Bradshaw RHW, Power MJ, Harmand P, Arneth A, Kaplan JO, Vannière B, Sykes MT (2013) Exploring potential drivers of European biomass burning over the Holocene: a data-model analysis. Glob Ecol Biogeogr 22:1248–1260

    Article  Google Scholar 

  • Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landscape Ecol 16:557–567

    Article  Google Scholar 

  • Mouillot F, Ratte J-P, Joffre R, Moreno JM, Rambal S (2003) Some determinants of the spatio-temporal fire cycle in a mediterranean landscape (Corsica, France). Landscape Ecol 18:665–674

    Article  Google Scholar 

  • Müller MM, Vacik H (2017) Characteristics of lightnings igniting forest fires in Austria. Agric For Meteorol 240–241:26–34

    Article  Google Scholar 

  • Müller MM, Vacik H, Diendorfer G, Arpaci A, Formayer H, Gossow H (2013) Analysis of lightning-induced forest fires in Austria. Theor Appl Climatol 111:183–193

    Article  Google Scholar 

  • Nauslar, NJ (2014) Examining the lightning polarity of lightning caused wildfires. In: 23rd international lightning detection conference, Tucson, AZ, 18–19 Mar

  • Niklasson M, Granström A (2000) Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–1499

    Article  Google Scholar 

  • Niklasson M, Zin E, Zielonka T, Feijen M (2010) A 350-year tree-ring fire record from Bialowieza Primeval Forest, Poland: implications for Central European lowland fire history. J Ecol 98(6):1319–1329

    Article  Google Scholar 

  • Novák J, Sadlo J, Svobodova-Svitavska H (2012) Unusual vegetation stability in a lowland pine forest area (Doksy region, Czech Republic). Holocene 22:947–955

    Article  Google Scholar 

  • Olea PP, Mateo-Tomás P, de Frutos A (2010) Estimating and modelling bias of the hierarchical partitioning public-domain software: implications in environmental management and conservation. PLoS ONE 5:1–7

    Article  CAS  Google Scholar 

  • Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean Ecosystems. In: Chuvieco E (ed) Remote sensing of large wildfires in the European Mediterranean basin. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Pew K, Larsen CP (2001) GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. For Ecol Manag 140:1–18

    Article  Google Scholar 

  • Pineda N, Montanyà J, van der Velde OA (2014) Characteristics of lightning related to wildfire ignitions in Catalonia. Atmos Res 135–136:380–387

    Article  Google Scholar 

  • Podur J, Martell DL, Csillag F (2003) Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998. Ecol Modell 164:1–20

    Article  Google Scholar 

  • Pyne SJ, Andrews PL, Laven RD (1996) Introduction to wildland fire. Wiley, New York

    Google Scholar 

  • Reyes O, Casal M (2012) Effects of forest fire ash on germination and early growth of four pinus species. Plant Ecol 175:81–89

    Article  Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Int J Sci 5:23–27

    Google Scholar 

  • Rogers BM, Soja AJ, Goulden ML, Randerson JT (2015) Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat Geosci 8:228–234

    Article  CAS  Google Scholar 

  • Rychtecká P, Urbaňcová N (2008) Škodliví činitelé lesa v letech 1996-2006/Harmful factors of the forest in the period of 1996-2006. Lesnická práce 6/08

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569

    Article  CAS  Google Scholar 

  • Skre O, Wielgolanski FE, Moe B (1998) Biomass and chemical composition of common forest plants in response to fire in western Norway. J Veg Sci 9:501–510

    Article  Google Scholar 

  • Stahli M, Finsinger W, Tinner W, Allgower B (2006) Wildfire history and fire ecology of the Swiss National Park (Central Alps): new evidence from charcoal, pollen and plant macrofossils. The Holocene 16:805–817

    Article  Google Scholar 

  • Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. The Holocene 8:1214–1226

    Article  Google Scholar 

  • Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289

    Article  Google Scholar 

  • Tolasz R (2007) Atlas podnebí Česka/climate atlas of Czechia. CHMÚ a Univerzita Palackého, Olomouc

    Google Scholar 

  • Trnka M, Brázdil R, Možný M, Štěpánek P, Dobrovolný P, Zahradníček P, Balek J, Semerádová D, Dubrovský M, Hlavinka P, Eitzinger J, Wardlow B, Svoboda M, Hayes M, Žalud Z (2015) Soil moisture trends in the Czech Republic between 1961 and 2012. Int J Climatol 35:3733–3747

    Article  Google Scholar 

  • Valese E, Conedera M, Held AC, Ascoli D (2014) Fire, humans and landscape in the European Alpine region during the Holocene. Anthropocene 6:63–74

    Article  Google Scholar 

  • Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27:1181–1196

    Article  Google Scholar 

  • Vogt BJ (2011) Exploring cloud-to-ground lightning earth highpoint attachment geography by peak current. Earth Interact 15:1–16

    Article  Google Scholar 

  • Wotton BM, Martell DL (2005) A lightning fire occurrence model for Ontario. Can J For Res 35:1389–1401

    Article  Google Scholar 

  • Yang J, He HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. For Sci 53:1–15

    CAS  Google Scholar 

  • Zin E, Drobyshev I, Bernacki D, Niklasson M (2015) Dendrochronological reconstruction reveals a mixed-intensity fire regime in Pinus sylvestris-dominated stands of Białowieża Forest, Belarus and Poland. J Veg Sci 26:934–945

    Article  Google Scholar 

  • Zumbrunnen T, Menéndez P, Bugmann H, Conedera M, Gimmi U, Bürgi M (2012) Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland. Reg Environ Chang 12:935–949

    Article  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the Czech Science Foundation (Grant 14-22658S) and by the Academy of Sciences of the Czech Republic (long-term research development project RVO67985939). We further thank Martin Weiser for the help with data analyses, Martin Kopecký for the help with GIS and Frederick Rooks for language advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Adámek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adámek, M., Jankovská, Z., Hadincová, V. et al. Drivers of forest fire occurrence in the cultural landscape of Central Europe. Landscape Ecol 33, 2031–2045 (2018). https://doi.org/10.1007/s10980-018-0712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0712-2

Keywords

Navigation