Skip to main content

Advertisement

Log in

Enhancing connectivity in agroecosystems: focus on the best existing corridors or on new pathways?

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Restoring or establishing corridors between residual forest patches is one of the most adopted strategies for the conservation of animal populations and ecosystem processes in fragmented landscapes.

Objectives

This study aimed to assess whether it is more effective to focus restoration actions on existing corridors or to establish habitats in other strategic areas that can create new dispersal pathways to enhance connectivity.

Methods

We considered a real agroecosystem in northern Italy, based our analyses on graph-theory and habitat availability metrics, and focused on the Hazel Dormouse as the target species. We compared the connectivity increase resulting from (i) the simulated restoration of existing priority corridors, i.e., those with significant presence of forest but in which restoration actions would still result in considerable connectivity gains, or (ii) the simulated plantation of 30 hedgerows along new priority pathways, i.e., those areas with no current forest cover in which habitat creation would be more beneficial for connectivity.

Results

Implementing new priority pathways resulted in substantially larger connectivity gains (+ 38%) than when restoration efforts were concentrated in improving already existing corridors (+ 11%).

Conclusions

Establishing hedgerows along new pathways allowed enhancing the complementary and functionality of the full set of landscape corridors and proved more efficient than just strengthening the areas where dispersal flows were already concentrated. We demonstrated the importance of analytical procedures able to compare the effectiveness of different management strategies for enhancing connectivity. Our approach may be applied to multiple species sensitive to fragmentation in other heterogeneous landscapes and geographical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Bani L, Orioli V, Pisa G, Dondina O, Fagiani S, Fabbri E, Randi E, Mortelliti A, Sozio G (2018) Landscape determinants of genetic differentiation, inbreeding and genetic drift in the Hazel Dormouse (Muscardinus avellanarius). Conserv Genet 19:283–296

    Article  CAS  Google Scholar 

  • Bani L, Orioli V, Pisa G, Fagiani S, Dondina O, Fabbri E, Randi E, Sozio G, Mortelliti A (2017) Population genetic structure and sex-biased dispersal of the Hazel Dormouse (Muscardinus avellanarius) in a continuous and in a fragmented landscape in central Italy. Conserv Genet 18:261–274

    Article  Google Scholar 

  • Bani L, Pisa G, Luppi M, Spilotros G, Fabbri E, Randi E, Orioli V (2015) Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population. Ecol Evol 5:3472–3485

    Article  PubMed  PubMed Central  Google Scholar 

  • Beier P, Majka DR, Newell SL (2009) Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecol Appl 19:2067–2077

    Article  PubMed  Google Scholar 

  • Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851

    Article  PubMed  Google Scholar 

  • Beier P, Spencer W, Baldwin RF, McRae BH (2011) Toward best practices for developing regional connectivity maps. Conserv Biol 25:879–892

    Article  PubMed  Google Scholar 

  • Belote RT, Dietz MS, McRae BH, Theobald DM, McClure ML, Irwin GH, McKinley PS, Gage JA, Aplet GH (2016) Identifying corridors among large protected areas in the United States. PLoS ONE 11:e0154223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett AF (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN, Gland

    Book  Google Scholar 

  • Berger G, Kaechele H, Pfeffer H (2006) The greening of the European common agricultural policy by linking the European-wide obligation of set-aside with voluntary agri-environmental measures on a regional scale. Environ Sci Policy 9:509–524

    Article  Google Scholar 

  • Bottrill MC, Joseph LN, Carwardine J, Bode M, Cook C, Game ET, Grantham H, Kark S, Linke S, McDonald-Madden E, Pressey LR, Walker S, Wilson KA, Possingham HP (2008) Is conservation triage just smart decision making? Trends Ecol Evol 23:649–654

    Article  PubMed  Google Scholar 

  • Bowman J, Jaeger JA, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Article  Google Scholar 

  • Bright PW (1998) Behavior of specialist species in habitat corridors: arboreal dormice avoid corridor gaps. Anim Behav 56:1485–1490

    Article  CAS  PubMed  Google Scholar 

  • Bright PW, Mitchell P, Morris PA (1994) Dormouse distribution: survey techniques, insular ecology and selection of sites for conservation. J Appl Ecol 31:329–339

    Article  Google Scholar 

  • Büchner S (2008) Dispersal of common dormice Muscardinus avellanarius in a habitat mosaic. Acta Theriol 53:259–262

    Article  Google Scholar 

  • Burel F, Baudry J (1995) Social, aesthetic and ecological aspects of hedgerows in rural landscapes as a framework for greenways. Landsc Urban Plan 33:327–340

    Article  Google Scholar 

  • Carranza ML, D’Alessandro E, Saura S, Loy A (2012) Connectivity providers for semi-aquatic vertebrates: the case of the endangered otter in Italy. Landscape Ecol 27:281–290

    Article  Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Chiatante G, Dondina O, Lucchelli M, Bani L, Meriggi A (2017) Habitat selection of European badger Meles meles in a highly fragmented forest landscape in northern Italy: the importance of agro-forestry systems. Hystrix 28:247–252

    Google Scholar 

  • Clauzel C, Bannwarth C, Foltete JC (2015a) Integrating regional-scale connectivity in habitat restoration: an application for amphibian conservation in eastern France. J Nat Conserv 23:98–107

    Article  Google Scholar 

  • Clauzel C, Xiqing D, Gongsheng W, Giraudoux P, Li L (2015b) Assessing the impact of road developments on connectivity across multiple scales: application to Yunnan snub-nosed monkey conservation. Biol Conserv 192:207–217

    Article  Google Scholar 

  • Correa Ayram CA, Mendoza ME, Etter A, Salicrup DRP (2016) Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog Phys Geogr 40:7–37

    Article  Google Scholar 

  • Darby HC (1956) The clearing of the woodland in Europe. In: Thomas WL Jr (ed) Man’s role in changing the face of the earth. University of Chicago Press, Chicago, pp 183–216

    Google Scholar 

  • de la Torre JA, Núñez JM, Medellín RA (2017) Habitat availability and connectivity for jaguars (Panthera onca) in the Southern Mayan Forest: conservation priorities for a fragmented landscape. Biol Conserv 206:270–282

    Article  Google Scholar 

  • Donald PF, Pisano G, Rayment MD, Pain DJ (2002) The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric Ecosyst Environ 89:167–182

    Article  Google Scholar 

  • Dondina O, Kataoka L, Orioli V, Bani L (2016) How to manage hedgerows as effective ecological corridors for mammals: a two-species approach. Agric Ecosyst Environ 231:283–290

    Article  Google Scholar 

  • Dondina O, Orioli V, Colli L, Luppi M, Bani L (2018) Ecological network design from occurrence data by simulating species perception of the landscape. Landscape Ecol 33:275–287

    Article  Google Scholar 

  • Dondina O, Orioli V, D’Occhio P, Luppi M, Bani L (2017) How does forest species specialization affect the application of the island biogeography theory in fragmented landscapes? J Biogeogr 44:1041–1052

    Article  Google Scholar 

  • ERSAF (2014) Destinazione d’Uso dei Suoli Agricoli e Forestali (DUSAF) (Agricultural and Forest Land Use). Ente Regionale per i Servizi all’Agricoltura e alle Foreste della Lombardia, Milan

    Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fischer J, Lindenmayer JB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Gelling M, Macdonald DW, Mathews F (2007) Are hedgerows the route to increased farmland small mammal density? Use of hedgerows in British pastoral habitats. Landscape Ecol 22:1019–1032

    Article  Google Scholar 

  • Gippoliti S, Battisti C (2017) More cool than tool: equivoques, conceptual traps and weaknesses of ecological networks in environmental planning and conservation. Land Use Policy 68:686–691

    Article  Google Scholar 

  • Hilty JA, Merenlender AM (2004) Use of riparian corridors and vineyards by mammalian predators in Northern California. Conserv Biol 18:126–135

    Article  Google Scholar 

  • Hinsley SA, Bellamy PE (2000) The influence of hedge structure, management and landscape context on the value of hedgerows to birds: a review. J Environ Manag 60:33–49

    Article  Google Scholar 

  • Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605

    Article  PubMed  Google Scholar 

  • Juškaitis R, Šiožinytê V (2008) Habitat requirements of the common dormouse (Muscardinus avellanarius) and the fat dormouse (Glis glis) in mature mixed forest in Lithuania. Ekologia 27:143–151

    Google Scholar 

  • Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400:611–612

    Article  CAS  Google Scholar 

  • Landguth EL, Hand BK, Glassy J, Cushman SA, Sawaya MA (2012) UNICOR: a species connectivity and corridor network simulator. Ecography 35:9–14

    Article  Google Scholar 

  • Laurance SG, Laurance WF (1999) Tropical wildlife corridors: use of linear rainforest remnants by arboreal mammals. Biol Conserv 91:231–239

    Article  Google Scholar 

  • Mateo-Sánchez MC, Balkenhol N, Cushman SA, Pérez T, Domínguez A, Saura S (2015) Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere 6:1–16

    Article  Google Scholar 

  • Mateo-Sánchez MC, Cushman SA, Saura S (2014) Connecting endangered brown bear subpopulations in the Cantabrian Range (north-western Spain). Anim Conserv 17:430–440

    Article  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 7:e52604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McRae BH, Kavanagh DM (2011) Linkage mapper connectivity analysis software. The Nature Conservancy, Seattle. http://www.circuitscape.org/linkagemapper

  • Menz MH, Dixon KW, Hobbs RJ (2013) Hurdles and opportunities for landscape-scale restoration. Science 339:526–527

    Article  CAS  PubMed  Google Scholar 

  • Moqanaki EM, Cushman SA (2017) All roads lead to Iran: predicting landscape connectivity of the last stronghold for the critically endangered Asiatic cheetah. Anim Conserv 20:29–41

    Article  Google Scholar 

  • Mortelliti A, Santarelli L, Sozio G, Fagiani S, Boitani L (2013) Long distance field crossings by hazel dormice (Muscardinus avellanarius) in fragmented landscapes. Mamm Biol 78:309–312

    Article  Google Scholar 

  • Mortelliti A, Santulli Sanzo G, Boitani L (2009) Species’ surrogacy for conservation planning: caveats from comparing the response of three arboreal rodents to habitat loss and fragmentation. Biodivers Conserv 18:1131–1145

    Article  Google Scholar 

  • Mortelliti A, Sozio G, Driscoll DA, Bani L, Boitani L, Lindenmayer DB (2014) Population and individual-scale responses to patch size, isolation and quality in the Hazel Dormouse. Ecosphere 5:1–21

    Article  Google Scholar 

  • Panchetti F, Sorace A, Amori G, Carpaneto GM (2007) Nest site preference of common dormouse (Muscardinus avellanarius) in two different habitat types of central Italy. Ital J Zool 74:363–369

    Article  Google Scholar 

  • Panzacchi M, Van Moorter B, Strand O, Saerens M, Kivimäki I, St Clair CC, Herfindal I, Boitani L (2016) Predicting the continuum between corridors and barriers to animal movements using step selection functions and randomized shortest paths. J Anim Ecol 85:32–42

    Article  PubMed  Google Scholar 

  • Paoletti MG, Boscolo P, Sommaggio D (1997) Beneficial insects in fields surrounded by hedgerows in north eastern Italy. Biol Agric Hortic 15:310–323

    Article  Google Scholar 

  • Pardini R, de Arruda Bueno A, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Integrating landscape connectivity in broad-scale forest planning: a methodology based on graph structures and habitat availability indices. In: Lafortezza R, Sanesi G (eds) Patterns and processes in forest landscapes. Consequences of human management. Springer, Berlin, pp 111–116

    Google Scholar 

  • Pérez-Hernández CG, Vergara PM, Saura S, Hernández J (2015) Do corridors promote connectivity for bird-dispersed trees? The case of Persea lingue in Chilean fragmented landscapes. Landscape Ecol 30:77–90

    Article  Google Scholar 

  • Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecol 24:253–266

    Article  Google Scholar 

  • Ramakers JJC, Dorenbosch M, Foppen RPB (2014) Surviving on the edge: a conservation-oriented habitat analysis and forest edge manipulation for the Hazel Dormouse in the Netherlands. Eur J Wildl Res 60:927–931

    Article  Google Scholar 

  • Santos JS, Leite CCC, Viana JCC, dos Santos AR, Fernandes MM, de Souza Abreu V, do Nascimento TP, dos Santos LS, de Moura Fernandes MR, de Silva GF, de Mendonça R (2018) Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecol Indic 88:414–424

    Article  Google Scholar 

  • Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Indic 11:407–416

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33:523–537

    Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Modell Softw 24:135–139

    Article  Google Scholar 

  • Silva M, Prince ME (2008) The conservation value of hedgerows for small mammals in Prince Edward Island, Canada. Am Midl Nat 159:110–124

    Article  Google Scholar 

  • Torné J, Saura S (2013) Conefor 2.7.1—command line version 1.0.21. Universidad Politecnica de Madrid, SP. http://www.conefor.org

  • Torrubia S, McRae BH, Lawler JJ, Hall SA, Halabisky M, Langdon J, Case M (2014) Getting the most connectivity per conservation dollar. Front Ecol Environ 12:491–497

    Article  Google Scholar 

  • Watson DM, Doerr VA, Banks SC, Driscoll DA, van der Ree R, Doerr ED, Sunnucks P (2017) Monitoring ecological consequences of efforts to restore landscape-scale connectivity. Biol Conserv 206:201–209

    Article  Google Scholar 

  • Weibull AC, Östman Ö, Granqvist Å (2003) Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers Conserv 12:1335–1355

    Article  Google Scholar 

  • Williams M (2003) Deforesting the earth: from prehistory to global crisis. University of Chicago Press, Chicago

    Google Scholar 

  • Wolton R (2009) Hazel dormouse Muscardinus avellanarius (L.) nest site selection in hedgerows. Mammalia 73:7–12

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the PhD Funds of the University of Milano-Bicocca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Dondina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dondina, O., Saura, S., Bani, L. et al. Enhancing connectivity in agroecosystems: focus on the best existing corridors or on new pathways?. Landscape Ecol 33, 1741–1756 (2018). https://doi.org/10.1007/s10980-018-0698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0698-9

Keywords

Navigation