Skip to main content
Log in

Using riparian Zone scaling to optimize buffer placement and effectiveness

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Riparian buffers reduce subsurface nutrient losses to streams but there is a clear need to identify and prioritize locations for riparian buffer placement to optimize buffer performance. Scaling relations can be used to extrapolate hydrologic behavior within river networks and across catchments.

Objectives

We combined field and laboratory measurements of soils and groundwater quality collected at five riparian monitoring sites of different stream-order scales with landscape analysis to accomplish the following objectives: (1) evaluate the degree to which riparian zone patterns and processes are scaled in a pre-Wisconsin glacial landscape; and (2) use the scaling information to identify optimal placement of riparian buffers in the landform region for nutrient reduction benefits.

Results

Results indicated that there is proportional scaling of riparian zones within the region in terms of sediment texture, groundwater geochemistry and, to a lesser extent, in groundwater nutrient concentrations.

Conclusions

Placement of riparian buffers should be a priority along low order streams (< 3rd order) to best utilize the scaling characteristics of regional riparian zones, although buffering 2nd and 3rd streams may be the most cost effective locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altman SJ, Parizek RR (1995) Dilution of nonpoint-source nitrate in groundwater. J Environ Qual 24:707–718

    Article  CAS  Google Scholar 

  • Baker RG, Bettis EA III, Denniston RF, Gonzalez LA, Strickland LE, Krieg JR (2002) Holocene paleoenvironments in southeastern Minnesota—chasing the prairie-forest ecotone. Palaeogeogr Palaeoclimatol Palaeoecol 177:103–122

    Article  Google Scholar 

  • Bettis EA III, Autin WJ (1997) Complex response of a mid-continent North America drainage system to late Wisconsinan sedimentation. J Sediment Res 67:740–748

    Google Scholar 

  • Bettis EA III, Baker RG, Green WR, Whelan MK, Benn DW (1992) Late Wisconsinan and Holocene alluvial stratigraphy, paleoecology, and archeological geology of east-central Iowa. Iowa Dept. Natural Resources. Geological Survey Bureau, Iowa City, IA

    Google Scholar 

  • Bettis EA III, Littke JP (1987) Holocene Alluvial Stratigraphy and Landscape Development In: Soap Creek Watershed. Appanoose, Davis, Monroe, and Wapello Counties, Iowa. Iowa Depart. Natural Resources, Geological Survey Bureau, Iowa City, IA

  • Bettis EA III (1990) Holocene alluvial stratigraphy and selected aspects of the Quaternary history of western Iowa: guidebook for the 37th field conference of the Midwest Friends of the Pleistocene. Iowa Dept. Natural Resources. Geological Survey Bureau, Iowa City, IA

  • Bishop K, Buffam I, Erlandsson M, Fölster MJ, Laudon H, Seibert L, Temnerud J (2008) Aqua incognita: the unknown headwaters. Hydrol Process 22:1239–1242

    Article  Google Scholar 

  • Brooks PD, McKnight DM, Bencala KE (1999) The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments. Water Resour Res 35:1895–1902

    Article  CAS  Google Scholar 

  • Burt TP, Matchett LS, Goulding KWT, Webster CP, Haycock NE (1999) Denitrification in riparian buffer zones: the role of floodplain sediments. Hydrol Process 13:1451–1463

    Article  Google Scholar 

  • Cey EE, Rudolph DL, Aravena R, Parkin G (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J Contam Hydrol 37:45–67

    Article  CAS  Google Scholar 

  • Clement JC, Aquilina L, Bour O, Plaine K, Burt TP, Pinay G, (2003) Hydrological flowpaths and nitrate removal rates within a riparian floodplain along a fourth-order stream in Brittany (France). Hydrol Process 17:1177–1195

    Article  Google Scholar 

  • Clement J, Pinay G, Marmonier P (2002) Seasonal dynamics of denitrification along tophydrosequences in three different riparian wetlands. J Environ Qual 31:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • DeVito KJ, Fitzgerald D, Hill AR, Aravena R (2000) Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone. J Environ Qual 29:1075–1084

    Article  CAS  Google Scholar 

  • Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94:153–171

    Article  Google Scholar 

  • Dosskey MG (2001) Toward quantifying water pollution abatement in response to installing buffer on crop land. Environ Manag 28:577–698

    Article  CAS  Google Scholar 

  • Dosskey MG, Helmers MJ, Eisenhauer DE (2006) An approach for using soil surveys to guide the placement of water quality buffers. J Soil Water Conserv 61:344–354

    Google Scholar 

  • Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6(3):241–252

    Article  Google Scholar 

  • Dunn WC, Milne BT, Mantilla R, Gupta VK (2011) Scaling relations between riparian vegetation and stream order in the Whitewater River network, Kansas, USA. Landscape Ecol 26:983–997

    Article  Google Scholar 

  • Duval TP, Hill AR (2007) Influence of base flow stream bank seepage on riparian zone nitrogen biogeochemistry. Biogeochemistry 85:85–199

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Methods of soil analysis: Part 1—Physical and mineralogical methods. p 383–411

  • Gold AJ, Groffman PM, Addy K, Kellogg DQ, Stolt M, Rosenblatt AE (2001) Landscape attributes as control on ground water nitrate removal capacity of riparian zones. J Am Water Resour Assoc 37:1457–1464

    Article  CAS  Google Scholar 

  • Grabs T, Bishop K, Laudon H, Lyon SW, Seibert J (2012) Riparian zone hydrology and soil water total organic carbon (TOC): implications for spatial variability and upscaling of lateral riparian TOC exports. Biogeosciences 9:3901–3916

    Article  CAS  Google Scholar 

  • Hallberg GR (1980) Pleistocene stratigraphy in east-central Iowa. Iowa Depart. Natural Resources, Geological Survey Bureau, Iowa City, IA

  • Hill AR, DeVito KJ, Campagnolo S, Sanmugadas K (2000) Subsurface denitrification in a forest riparian zone: interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51:193–223

    Article  Google Scholar 

  • Hill AR, Vidon PGF, Langat J (2004) Denitrification potential in relation to lithology in five headwater riparian zones. J Environ Qual 33:911–919

    Article  CAS  PubMed  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Hoffmann CC, Kjaergaard C, Uusi-Kämppä J, Hansen HCB, Kronvang B (2009) Phosphorus retention in riparian buffers: review of their efficiency. J Environ Qual 38:1942–1955

    Article  CAS  PubMed  Google Scholar 

  • Hupp CR (1992) Riparian vegetation recovery patterns following stream channelization: a geomorphic perspective. Ecology 73:1209–1226

    Article  Google Scholar 

  • Iowa Nutrient Reduction Strategy (INRS) (2013). http://www.nutrientstrategy.iastate.edu/. Accessed 6 March 2013

  • Jacobs TC, Gilliam JW (1985) Riparian losses of nitrate from agricultural drainage waters. J Environ Qual 14:472–478

    Article  CAS  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Knox JC (1977) Historical valley sedimentation in the Upper Mississippi valley. Ann Assoc Am Geogr 77:224–244

    Article  Google Scholar 

  • Laudon H, Sjöblom V, Buffam I, Seibert J, Mörth M (2007) The role of catchment scale and landscape characteristics for runoff generation of boreal streams. J Hydrol 344:198–209

    Article  Google Scholar 

  • Lee KH, Isenhart TM, Schultz RC, Mickelson SK (2000) Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. J Environ Qual 29:1200–1205

    Article  CAS  Google Scholar 

  • Leopold B, Miller JP (1956) Ephemeral streams-hydraulic factors and their relation to the drainage net. U.S. Geol Professional Papers, 282-A, pp 1–37

  • Lowrance R (1992) Groundwater nitrate and denitrification in a coastal plain riparian forest. J Environ Qual 21:401–405

    Article  CAS  Google Scholar 

  • Mantilla R, Gupta VK (2005) A GIS numerical framework to study the process basis of scaling statistics in river networks. IEEE Geosci Remote Sens Lett 2:404–408

    Article  Google Scholar 

  • Mayer PM, Reynolds SK, McCutchen MD, Canfield TJ (2006) Riparian buffer width, vegetative cover and nitrogen removal effectiveness: a review of current science and regulations. EPA/600/R-05/118, Cincinnati, OH

  • McClain ME, Boyer EW, Dent L, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  CAS  Google Scholar 

  • McDonnell JJ, Sivapalan M, Vaché K, Dunn S, Grant G, Haggerty R, Hinz C, Hooper R, Kirchner J, Roderick ML, Selker J (2007) Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour Res. https://doi.org/10.1029/2006WR005467

    Google Scholar 

  • McGuire KJ, McDonnell JJ, Weiler M, Kendall C, McGlynn BL, Welker JM, Seibert J (2005) The role of topography on catchment‐scale water residence time. Water Resources Research, 41(5)

  • Mittelstet AR, Heeren DM, Fox GA, Storm DE, White MJ, Miller RB (2011) Comparison of subsurface and surface runoff phosphorus transport rates in alluvial floodplains. Agric Ecosyst Environ 141:417–425

    Article  CAS  Google Scholar 

  • Newbold JD, Elwood JW, O’Neill RV, Van Winkle W (1981) Measuring nutrient spiraling in streams. Can J Fisher Aquat Sci 38:860–863

    Article  Google Scholar 

  • Noe GB, Hupp CR, Rybicki NB (2013) Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems 16:75–94

    Article  CAS  Google Scholar 

  • Orellana F, Verma P, Loehide II SP, Daly E (2012) Monitoring and modeling water-vegetation interactions in groundwater-dependent systems. Reviews of Geophysics 50: RG3003

  • Palmer JA, Schilling KE, Isenhart TM, Schultz RC (2014) Streambank erosion rates and loads with a single watershed: bridging the gap between temporal and spatial scales. Geomorphology 209:66–78

    Article  Google Scholar 

  • Peterson BJ, Wollheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Martí E, Bowden WB, Valett HM, Hershey AE, McDowell WH (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90

    Article  CAS  PubMed  Google Scholar 

  • Pinay G, Black VJ, Planty-Tabacchi AM, Gumiero B, Decamps H (2000) Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50:163–182

    Article  Google Scholar 

  • Prior JC (1991) Landforms of Iowa. University of Iowa Press, Iowa City, IA

    Google Scholar 

  • Rodriguez-Iturbe I, Rinaldo A (1997) Fractal river basins. Cambridge University Press, New York

    Google Scholar 

  • Russell MJ, Weller DE, Jordan E, Sigwart KJ, Sullivan KJ (2008) Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285–304

    Article  CAS  Google Scholar 

  • Schilling KE, Drobney P (2014) Restoration of prairie hydrology at the watershed scale: two decades of progress at Neal Smith National Wildlife Refuge. Land 3:206–238

    Article  Google Scholar 

  • Schilling KE, Jacobson P (2008) Nutrient concentration patterns near an incised stream: effects of floodplain lithology and land management. Biogeochemistry 87:199–216

    Article  CAS  Google Scholar 

  • Schilling KE, Jacobson P (2009) Water uptake and nutrient concentrations under a floodplain oak savanna during a non-flood period, lower Cedar River, Iowa. Hydrol Process 23:3006–3016

    Article  CAS  Google Scholar 

  • Schilling KE, Jacobson P (2011) Spatial relations of topography, lithology and water quality in a large river floodplain. River Res Appl. https://doi.org/10.1002/rra.1531

    Google Scholar 

  • Schilling KE, Jacobson P (2014) Effectiveness of perennial riparian buffers to reduce subsurface nutrient losses to incised streams in southern Iowa. CATENA 114:140–148

    Article  CAS  Google Scholar 

  • Schilling KE, Jacobson P (2016) Water and nutrient discharge to a high-value terrace-floodplain fen: resilience and risk. Ecohydrology. https://doi.org/10.1002/eco.1718

    Google Scholar 

  • Schilling KE, Li Z, Zhang YK (2006) Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa. J Hydrol 327:140–150

    Article  CAS  Google Scholar 

  • Schilling KE, McLellan E, Bettis EA III (2013) Letting wet spots be wet: restoring natural bioreactors in the dissected glacial landscape. Environ Manag 52:1440–1452

    Article  Google Scholar 

  • Schilling KE, Palmer JA, Bettis EA III, Jacobson P, Schultz RC, Isenhart TM (2009) Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa (USA). CATENA 77:266–273

    Article  CAS  Google Scholar 

  • Schilling KE, Tomer MD, Zhang YK, Weisbrod T, Jacobson P, Cambardella CA (2007) Hydrogeologic controls on nitrate transport in a small agricultural catchment, Iowa. J Geophys Res 112:G03007

    Article  Google Scholar 

  • Schilling KE, Zhang YK, Drobney P (2004) Water table fluctuations near an incised stream, Walnut Creek, Iowa. J Hydrol 286:236–248

    Article  Google Scholar 

  • Schoonover JE, Williard KWJ (2003) Ground water nitrate reduction in giant cane and forest riparian buffer zones. J Am Water Resour Assoc 39:347–354

    Article  CAS  Google Scholar 

  • Schultz RC, Colletti JP, Isenhart TM, Simpkins WW, Mize CW, Thompson ML (1995) Design and placement of a multi-species riparian buffer strip. Agrofor Syst 29:201–225

    Article  Google Scholar 

  • Shields FD, Knight SS, Cooper CM (1995) Rehabilitation of watersheds with incising channels. Water Resour Bull 31:971–982

    Article  Google Scholar 

  • Simon A (1989) A model of channel response in disturbed alluvial channels. Earth Surf Proc Land 14:11–26

    Article  Google Scholar 

  • Sivapalan M (2003) Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrol Process 17:1037–1041

    Article  Google Scholar 

  • Soulsby C, Tetzlaff D, Rodgers P, Dunn S, Waldron S (2006) Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation. J Hydrol 325:197–221

    Article  Google Scholar 

  • Speed M, Tetzlaff D, Soulsby C, Hrachowitz M, Waldron S (2010) Isotopic and geochemical tracers reveal similarities in transit times in contrasting mesoscale catchments. Hydrol Process 24:1211–1224

    Article  CAS  Google Scholar 

  • Spruill TB (2000) Statistical evaluation of effects of riparian buffers on nitrate and ground water quality. J Environ Qual 29:1523–1538

    Article  CAS  Google Scholar 

  • Strahler AN (1952) Dynamic basis of geomorphology. Geol Soc Am Bull 63:923–938

    Article  Google Scholar 

  • Tetzlaff D, Carey SK, Laudon H, McGuire K (2010) Catchment processes and heterogeneity at multiple scales—Benchmarking observations, conceptualization and prediction. Hydrol Process 24:2203–2208

    Article  Google Scholar 

  • Tetzlaff D, Seibert J, McGuire KJ, Laudon H, Burns DA, Dunn SM, Soulsby C (2009) How does landscape structure influence catchment transit time across different geomorphic provinces? Hydrol Process 23:945–953

    Article  Google Scholar 

  • Thorp JH, Thoms MC, DeLong MD (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl 22:123–147

    Article  Google Scholar 

  • Tomer MD, Dosskey Burkart MR, James DE, Helmers MJ, Eisenhauer DE (2009) Methods to prioritize placement of riparian buffers for improved water quality. Agrofor Syst 75:17–25

    Article  Google Scholar 

  • Tomer MD, Schilling KE, Cambardella CA, Jacobson P, Drobney P (2010) Groundwater nutrient concentrations during prairie reconstruction on an Iowa landscape. Agric Ecosyst Environ 139:206–213

    Article  CAS  Google Scholar 

  • Troch PA, Carrillo GA, Heidbüchel I, Rajagopal S, Switanek M, Volkmann TH, Yaeger M (2009) Dealing with landscape heterogeneity in watershed hydrology: a review of recent progress toward new hydrological theory. Geogr Compass 3:375–392

    Article  Google Scholar 

  • Turner RE, Rabalais N, Justic D (2008) Gulf of Mexico hypoxia: altered states and a legacy. Environ Sci Technol 42:2323–2327

    Article  CAS  PubMed  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Cushing JR (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Vidon PGF, Hill AR (2004) Landscape controls on the hydrology of stream riparian zones. J Hydrol 292:210–228

    Article  Google Scholar 

  • Vidon PG, Hill AR (2006) A landscape-based approach to estimate riparian hydrological and nitrate removal functions. J Am Water Resour Assoc 42:1099–1112

    Article  CAS  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400:379–395

    Article  CAS  PubMed  Google Scholar 

  • Zaimes GN, Schultz RC, Isenhart TM (2008) Streambank Soil and Phosphorus Losses Under Different Riparian Land-Uses in Iowa. J Am Water Resourc Assoc 44:935–947

    Article  CAS  Google Scholar 

  • Zhang X, Liu X, Zhang M, Dahlgren RA, Eitzel M (2010) A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J Environ Qual 39:76–84

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Schilling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, K.E., Jacobson, P.J. & Wolter, C.F. Using riparian Zone scaling to optimize buffer placement and effectiveness. Landscape Ecol 33, 141–156 (2018). https://doi.org/10.1007/s10980-017-0589-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0589-5

Keywords

Navigation