Skip to main content
Log in

Modeling and mapping forest diversity in the boreal forest of interior Alaska

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Patterns of forest diversity are less well known in the boreal forest of interior Alaska than in most ecosystems of North America. Proactive forest planning requires spatially accurate information about forest diversity. Modeling is a cost-efficient way of predicting key forest diversity measures as a function of human and environmental factors.

Objectives

Investigate and predict the patterns and processes in tree species and tree size-class diversity within the boreal forest of Alaska for a first mapped quantitative baseline.

Methods

For the boreal forest of Alaska, USA, we employed Random Forest Analysis (machine learning) and the Boruta algorithm in R to predict tree species and tree size-class diversity for the entire region using a combination of forest inventory data and a suite of 30 predictors from public open-access data archives that included climatic, distance, and topographic variables. We developed prediction maps in a GIS for the current levels (Year 2012) of tree size-class and species diversity.

Results

The method employed here yielded good accuracy for the huge Alaskan landscape despite the exclusion of spectral reflectance data. It’s the first quantified GIS prediction baseline. The results indicate that the geographic pattern of tree species diversity differs from the pattern of tree size-class diversity across this forest type.

Conclusions

The results suggest that human factors combined with topographical factors had a large impact on predicting the patterns of diversity in the boreal forest of interior Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson R, Loucks O, Swain A (1969) Herbaceous response to canopy cover, light intensity, and throughfall precipitation in coniferous forests. Ecology 50(2):255–263

    Article  Google Scholar 

  • Angelstam P, Boutin S, Schmiegelow F, Villard MA, Drapeau P, Host G, Innes J, Isachenko G, Kuuluvainen T, Mönkkönen M (2004) Targets for boreal forest biodiversity conservation—a rationale for macroecological research and adaptive management. Ecol Bull 51:487–509

    Google Scholar 

  • Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. J For 64:691–692

    Google Scholar 

  • Bergeron Y, Leduc A, Harvey BD, Gauthier S (2002) Natural fire regime: a guide for sustainable management of the Canadian boreal forest. Silv Fen 36(1):81–95

    Google Scholar 

  • Bernhardt EL, Hollingsworth TN, Chapin FS (2011) Fire severity mediates climate-driven shifts in understorey community composition of black spruce stands of interior Alaska. J Veg Sci 22(1):32–44

    Article  Google Scholar 

  • Bivand RS, Anselin L, Berke O, Bernat A, Carvalho M, Chun Y, Dormann CF, Dray S, Halbersma R, Lewin-Koh N (2007) spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.4–9

  • Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New York

    Google Scholar 

  • Bose AK, Harvey BD, Brais S, Beaudet M, Leduc A (2014) Constraints to partial cutting in the boreal forest of Canada in the context of natural disturbance-based management: a review. Forestry 87(1):11–28

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Bunnell FL, Huggard DJ (1999) Biodiversity across spatial and temporal scales: problems and opportunities. For Ecol Manag 115(2–3):113–126

    Article  Google Scholar 

  • Burton PJ, Messier C, Smith DW, Adamowicz WL (eds) (2003) Towards sustainable management of the boreal forest. NRC Research Press, Ottawa

    Google Scholar 

  • Chapin FS III, Hollingsworth T, Murray DF, Viereck LA, Walker MD (2006a) Floristic diversity and vegetation distribution in the Alaskan boreal forest. In: Chapin FS III, Oswood M, Van Cleve K, Viereck LA, Verbyla D (eds) Alaska’s changing boreal forest. Oxford University Press, New York, pp 81–99

    Google Scholar 

  • Chapin FS 3rd, Lovecraft AL, Zavaleta ES, Nelson J, Robards MD, Kofinas GP, Trainor SF, Peterson GD, Huntington HP, Naylor, RL (2006b) Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate. Proc Natl Acad Sci USA 103(45):16637–16643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin FS, Oswood MW, Van Cleve K, Viereck LA, Chapin MC, Verbyla DL (eds) (2006c) Alaska’s changing boreal forest. Oxford University Press, New York

    Google Scholar 

  • Condit R, Ashton P, Bunyavejchewin S et al (2006) The importance of demographic niches to tree diversity. Science 313(5783):98–101

    Article  CAS  PubMed  Google Scholar 

  • Craig E, Huettmann F (2008) Using “blackbox” algorithms such as treenet and random forests for data-mining and for finding meaningful patterns, relationships and outliers in complex ecological data: an overview, an example using golden eagle satellite data and an outlook for a promising future. In: Wang HF (ed) Intelligent data analysis: developing new methodologies through pattern discovery and recovery. IGI Global, Hershey

    Google Scholar 

  • Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291(5505):864–868

    Article  CAS  PubMed  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Curtis RO (1983) Procedures for establishing and maintaining permanent plots for silvicultural and yield research. Page 56. Gen. Tech. Rep. PNW-155. U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland

  • Cushman S, Huettmann F (eds) (2010) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo

    Google Scholar 

  • Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192

    Article  Google Scholar 

  • Drew CA, Wiersma YF, Huettmann F (eds) (2011) Predictive species and habitat modeling in landscape ecology: concepts and applications. Springer, New York

    Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Feilhauer H, Schmidtlein S (2009) Mapping continuous fields of forest alpha and beta diversity. Appl Veg Sci 12(4):429–439

    Article  Google Scholar 

  • Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. Am Nat 161(4):523–536

    Article  PubMed  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19(4):474–499

    Article  Google Scholar 

  • Franklin JF (1988) Structural and functional diversity in temperate forests. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 166–175

    Google Scholar 

  • Franklin JF, Spies TA, Pelt RV, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manag 155(1):399–423

    Article  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Annals Stat 29(5):1189–1232

    Article  Google Scholar 

  • Fu P, Rich PM (1999) Design and implementation of the solar analyst: an arcview extension for modeling solar radiation at landscape scales. In: Proceedings of the 19th annual ESRI user conference. San Diego, USA

  • Gutsell SL, Johnson EA (2002) Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics. J Ecol 90(1):153–166

    Article  Google Scholar 

  • Hawkins BA, Montoya D, Rodriguez MA, Olalla-Tarraga MA, Zavala MA (2007) Global models for predicting woody plant richness from climate: comment. Ecology 88(1): 255–259; discussion 259–62

  • Hellmann JJ, Fowler GW (1999) Bias, precision, and accuracy of four measures of species richness. Ecol Appl 9(3):824–834

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Iverson LR, Prasad AM (2001) Potential changes in tree species richness and forest community types following climate change. Ecosystems 4(3):186–199

    Article  CAS  Google Scholar 

  • Jenness J (2006) Topographic position index (tpi_jen.avx) extension for Arcview 3.x, v.1.3a. http://www.jennessent.com/arcview/tpi.htm, Jenness Enterprises [EB/OL]

  • Johnson KD, Harden J, McGuire AD, Bliss NB, Bockheim JG, Clark M, Nettleton-Hollingsworth T, Jorgenson MT, Kane ES, Mack M, O’Donnell J, Ping CL, Schuur EAG, Turetsky MR, Valentine DW (2011) Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma 167–68:71–84

    Article  Google Scholar 

  • Johnson NC, Malk AJ, Szaro RC, Sexton WT (eds) (1999) Ecological stewardship: a common reference for ecosystem management. Elsevier Science, Oxford

    Google Scholar 

  • Johnstone J, Chapin F (2006) Effects of soil burn severity on post-fire tree recruitment in boreal forest. Ecosystems 9(1):14–31

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113(2):363–375

    Article  Google Scholar 

  • Kasischke ES, Williams DG, Barry D (2002) Analysis of the patterns of large fires in the boreal forest region of Alaska. Int J Wildland Fire 11(2):131–144

    Article  Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104(14):5925–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kursa MB, Rudnicki WR (2010) Feature selection with the boruta package. J Stat Softw 36(11):1–13

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation—trouble or new paradigm. Ecology 74(6):1659–1673

    Article  Google Scholar 

  • Lei XD, Wang WF, Peng CH (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can J For Res 39(10):1835–1847

    Article  Google Scholar 

  • Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform 6(3–4):228–241

    Article  Google Scholar 

  • Li J, Heap AD, Potter A, Daniell JJ (2011) Application of machine learning methods to spatial interpolation of environmental variables. Environ Modell Softw 26(12):1647–1659

    Article  Google Scholar 

  • Liang JJ, Zhou M, Verbyla DL, Zhang LJ, Springsteen AL, Malone T (2011) Mapping forest dynamics under climate change: a matrix model. For Ecol Manag 262(12):2250–2262

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22

    Google Scholar 

  • Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72(3):445–463

    Article  Google Scholar 

  • Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14(4):941–950

    Article  Google Scholar 

  • Magness D, Huettmann F, Morton J (2008) Using random forests to provide predicted species distribution maps as a metric for ecological inventory & monitoring programs. In: Smolinski T, Milanova M, Hassanien A-E (eds) Applications of computational intelligence in biology, studies in computational intelligence, vol 122. Springer, Berlin, pp 209–229

    Chapter  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Major J (1951) A functional, factorial approach to plant ecology. For Ecol Manag 32:392–412

    Article  Google Scholar 

  • Malone T, Liang J, Packee EC (2009) Cooperative Alaska Forest Inventory. Gen. Tech. Rep. PNW-GTR-785. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland

  • McRoberts RE, Winter S, Chirici G, Hauk E, Pelz DR, Moser WK, Hatfield MA (2008) Large-scale spatial patterns of forest structural diversity. Can J For Res 38(3):429–438

    Article  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91(1):252–261

    Article  PubMed  Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain 2(1–2):75–79

    Article  Google Scholar 

  • Niemelä J (1999) Management in relation to disturbance in the boreal forest. For Ecol Manag 115:127–134

    Article  Google Scholar 

  • Ogden AE, Innes JL (2009) Application of structured decision making to an assessment of climate change vulnerabilities and adaptation options for sustainable forest management. Ecol Soc 14(1):11

    Article  Google Scholar 

  • Ohse B, Huettmann F, Ickert-Bond SM, Juday GP (2009) Modeling the distribution of white spruce (Picea glauca) for Alaska with high accuracy: an open access role-model for predicting tree species in last remaining wilderness areas. Polar Biol 32(12):1717–1729

    Article  Google Scholar 

  • Pastor J, Mladenoff D, Haila Y, Bryant J, Payette S (1996) Biodiversity and ecosystem processes in boreal regions. Scope-Scientific Committee on problems of the Environment International Council of Scientific Unions 55:33–69

  • Rands MR, Adams WM, Bennun L Butchart, SH, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JP, Sutherland WJ, Vira B (2010) Biodiversity conservation: challenges beyond 2010. Science 329(5997):1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Roberts MR, Gilliam FS (1995) Patterns and mechanisms of plant diversity in forested ecosystems—implications for forest management. Ecol Appl 5(4):969–977

    Article  Google Scholar 

  • Roessler JS, Packee EC (2000) Disturbance history of the Tanana River Basin in Alaska: management implications. In: Proceedings of the Annual Tall Timbers Fire Ecology Conference. Fire and forest ecology: innovative silviculture and vegetation management Tallahassee, 2000. Tall Timbers Research Station, pp. 46–57

  • Ruefenacht B, Finco MV, Nelson MD et al (2008) Conterminous US and Alaska Forest type mapping using forest inventory and analysis data. Photogramm Eng Remote Sens 74(11):1379–1388

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Siroky DS (2009) Navigating random forests and related advances in algorithmic modeling. Stat Surv 3:147–163

    Article  Google Scholar 

  • Sokal R, Oden N (1978) Spatial autocorrelation in biology. 1. Methodology. Biol J Linn Soc 10(2):199–228

    Article  Google Scholar 

  • Stage AR, Salas C (2007) Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For Sci 53(4):486–492

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294(5543):843–845

    Article  CAS  PubMed  Google Scholar 

  • USDA Forest service SaPF, Forest Health Protection, Alaska Department of Natural Resources DoF (2005) Forest insect and disease conditions in Alaska. http://agdc.usgs.gov/data/projects/fhm/#K

  • Viereck L, Little E (2007) Alaska trees and shrubs. University of Alaska Press, Fairbanks

    Google Scholar 

  • Werner RA (1996) Forest health in boreal ecosystems of Alaska. For Chron 72(1):43–46

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28(4):453–470

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3(4):385–397

    Article  Google Scholar 

  • Wurtz TL, Gasbarro AF (1996) A brief history of wood use and forest management in Alaska. For Chron 72(1):47–50

    Article  Google Scholar 

  • Wurtz TL, Ott RA, Maisch JC (2006) Timber harvest in interior Alaska. In: Chapin FS III, Oswood M, Van Cleve K, Viereck L, Verbyla D (eds) Alaska’s changing boreal forest. Oxford University Press, New York, pp 302–308

    Google Scholar 

  • Yarie J, Van Cleve K (2010) Long-term monitoring of climatic and nutritional affects on tree growth in interior Alaska. Can J For Res 40(7):1325–1335

    Article  Google Scholar 

  • Young B, Liang J, Chapin FS (2011) Effects of species and tree size diversity on recruitment in the Alaskan boreal forest: a geospatial approach. For Ecol Manag 262(8):1608–1617

    Article  Google Scholar 

Download references

Acknowledgments

We thank Thomas Malone and Dan Rees along with their field assistants for collecting and compiling all the forest inventory data. We would also like to thank Daniel Kashian, Steve Cumming and, one anonymous reviewer for their thoughtful comments which greatly improved the overall quality of this manuscript. Support for this work was provided by the National Science Foundation, through its Integrative Graduate Education and Research Traineeship (IGERT, NSF 0114423) to the Resilience and Adaptation Program (RAP) at the University of Alaska Fairbanks; Alaska EPSCoR NSF award #EPS-0701898; and the State of Alaska Department of Natural Resources Division of Forestry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, B., Yarie, J., Verbyla, D. et al. Modeling and mapping forest diversity in the boreal forest of interior Alaska. Landscape Ecol 32, 397–413 (2017). https://doi.org/10.1007/s10980-016-0450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0450-2

Keywords

Navigation