Skip to main content

Advertisement

Log in

C–N–P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

As climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.

Objectives and methods

We applied the multiple element limitation model to investigate the spatial distribution of soil organic matter and vegetation on the North Slope of Alaska and examine the effects of changes in N and P cycles on tundra C budgets under climate warming.

Results

The spatial variation of vegetation biomass on the North Slope is mainly determined by nutrient mineralization, rather than air temperature. Our simulations show substantial increases in N and P mineralization with climate warming and consequent increases in nutrient availability to plants. There are distinctly different changes in N versus P cycles in response to warming. N is lost from the region because the warming-induced increase in N mineralization is in excess of plant uptake. However, P is more tightly cycled than N and the small loss of P under warming can be compensated by entrainment of recently weathered P into the ecosystem cycle. The increase in nutrient availability results in larger C gains in vegetation than C losses from soils and hence a net accumulation of C in the ecosystems.

Conclusions

The ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems. The C balance of the region is predominantly controlled by the internal nutrient cycles, and the external nutrient supply only exerts a minor effect on C budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Belshe EF, Schuur EAG, Bolker BM (2013) Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol Lett 16:1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Callaghan TV, Björn LO, Chapin FS III, Chernov Y, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Oechel WC, Panikov N, Shaver GR, Elster J, Henttonen H, Jónsdóttir IS, Laine K, Schaphoff S, Sitch S, Taulavuori E, Taulavuori K, Zöckler C (2005) Arctic tundra and polar desert ecosystems. Arctic climate impact assessment (ACIA). Cambridge University Press, Cambridge, pp 243–352

    Google Scholar 

  • Chapin FS III, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840

    Article  Google Scholar 

  • Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57

    Article  Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Coles SG (2001) An introduction to statistical modeling of extreme value. Springer, New York

    Book  Google Scholar 

  • Fan Z, Neff JC, Harden JW, Wickland KP (2008) Boreal soil carbon dynamics under a changing climate: a model inversion approach. J Geophys Res 113:G04016

    Google Scholar 

  • Frey K, McClelland J, Holmes R, Smith L (2007) Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J Geophys Res-Biogeosci 112:G04S58

  • Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Zeng N (2006) Climate–carbon cycle feedback analysis, results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, Mckerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61:415–435

    Article  Google Scholar 

  • Giblin AE, Laundre JA, Nadelhoffer KJ, Shaver GR (1994) Measuring nutrient availability in arctic soils using ion exchange resins. Soil Sci Soc Am J 58:1154–1162

    Article  CAS  Google Scholar 

  • Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 102(38):13521–13525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gough L, Wookey PA, Shaver GR (2002) Dry heath arctic tundra responses to long-term nutrient and light manipulation. Arct Antarct Alp Res 34:211–218

    Article  Google Scholar 

  • Gough L, Moore JC, Shaver GR, Simpson RT, Johnson DR (2012) Above- and belowground responses of arctic tundra ecosystems to altered soil nutrients and mammalian herbivory. Ecology 93:1683–1694

    Article  PubMed  Google Scholar 

  • Grover J (2004) Predation, competition and nutrient recycling: a stoichiometric approach with multiple nutrients. J Theor Biol 229:31–43

    Article  PubMed  CAS  Google Scholar 

  • Haefner JW (2005) Modeling biological systems: principles and applications. Springer, New York

    Google Scholar 

  • Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M (2007) Climate change and trace gases. Philos Trans R Soc A 365:1925–1954

    Article  CAS  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS III, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Nolan M, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Change 72:251–298

    Article  Google Scholar 

  • Hobara S, McCalley C, Koba K, Giblin AE, Weiss MS, Gettel GM, Shaver GR (2006) Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: a key source of atmospheric nitrogen. Arct Alp Antarc Res 38:363–372

    Article  Google Scholar 

  • Hobbie JE, Peterson BJ, Bettez N, Deegan L, O’Brien WJ, Kling GW, Kipphut GW, Bowden WB, Hershey AE (1999) Impact of global change on the biogeochemistry and ecology of an arctic freshwater system. Polar Res 18:207–214

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210

    Article  Google Scholar 

  • Hobbie SE, Miley TA, Weiss MS (2002) Carbon and nitrogen cycling in soils from different glacial surfaces in northern Alaska. Ecosystems 5:761–774

    Article  CAS  Google Scholar 

  • Hobbie SE, Gough L, Shaver GR (2005) Species compositional differences on different-aged glacial landscapes drive contrasting responses of tundra to nutrient addition. J Ecol 93:770–782

    Article  Google Scholar 

  • Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. J Geophys Res 115:G004002

    Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping C-L, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593

    Article  Google Scholar 

  • Hyvönen R, Ågren GI (2001) Decomposer invasion rate, decomposer growth rate, and substrate chemical quality: how they influence soil organic matter turnover. Can J For Res 31:1594–1601

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Climate change 2007. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang Y, Rastetter EB, Rocha AV, Pearce AR, Kwiatkowski BL, Shaver GR (2015) Modeling carbon–nutrient interactions during the early recovery of tundra after fire. Ecol Appl 25:1640–1652

    Article  PubMed  Google Scholar 

  • Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD (2009) Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arct Antarct Alp Res 41:309–316

    Article  Google Scholar 

  • Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems: linking energy flow with element cycling. Bull Math Biol 62:1137–1162

    Article  PubMed  CAS  Google Scholar 

  • Loranty MM, Goetz SJ, Rastetter EB, Rocha AV, Shaver GR, Humphreys ER, Lafleur PM (2011) Scaling an instantaneous model of tundra NEE to the Arctic landscape. Ecosystems 14:76–93

    Article  CAS  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  PubMed  CAS  Google Scholar 

  • Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EAG, Shaver GR, Verbyla DL (2011) Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475:489–492

    Article  PubMed  CAS  Google Scholar 

  • McGuire AD, Christensen TR, Hayes D, Heroult A, Euskirchen E, Yi Y, Kimball JS, Koven C, Lafleur P, Miller PA, Oechel W, Peylin P, Williams M (2012) An assessment of the carbon balance of arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosci Discuss 9:4543–4594

    Article  Google Scholar 

  • McKane RB, Rastetter EB, Shaver GR, Nadelhoffer KJ, Giblin AE, Laundre JA, Chapin FS III (1997) Reconstruction and analysis of historical changes in carbon storage in arctic tundra. Ecology 78:1188–1198

    Article  Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198

    Article  Google Scholar 

  • Mishra U, Riley WJ (2012) Alaskan soil carbon stocks: spatial variability and dependence on environmental factors. Biogeosciences 9:3637–3645

    Article  CAS  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in 6 Arctic soils. Ecology 72:242–253

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981

    Article  PubMed  CAS  Google Scholar 

  • Pearce AR, Rastetter EB, Kwiatkowski BL, Bowden WB, Mack MC, Jiang Y (2015) Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis. Ecol Appl 25(5):1271–1289

    Article  PubMed  CAS  Google Scholar 

  • Rastetter EB (2011) Modeling coupled biogeochemical cycles. Front Ecol Environ 9:68–73

    Article  Google Scholar 

  • Rastetter EB, McKane RB, Shaver GR, Melillo JM (1992) Changes in C storage by terrestrial ecosystems: How C–N interactions restrict responses to CO2 and temperature. Water Air Soil Pollut 64:327–344

    Article  CAS  Google Scholar 

  • Rastetter EB, Ågren GI, Shaver GR (1997) Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecol Appl 7:444–460

    Google Scholar 

  • Rastetter EB, Yanai RD, Thomas RQ, Vadeboncoeur MA, Fahey TJ, Fisk MC, Kwiatkowski BL, Hamburg SP (2013) Recovery from disturbance requires resynchronization of ecosystem nutrient cycles. Ecol Appl 23:621–642

    Article  PubMed  CAS  Google Scholar 

  • Raynolds MK, Walker DA, Maier HA (2006) Alaska Arctic Tundra Vegetation Map. 1:4,000,000. U.S. Fish and Wildlife Service. Anchorage, AK

  • Rocha AV, Loranty MM, Higuera PE, Mack MC, Hu FS, Jones BM, Breen AL, Rastetter EB, Goetz SJ, Shaver GR (2012) The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ Res Lett 7. doi:10.1088/1748-9326/7/4/044039

    Google Scholar 

  • Rustad LE, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Scenarios Network for Alaska planning (2013) http://www.snap.uaf.edu. Accessed 5 July 2012

  • Schuur EAG, Crummer KG, Vogel JG, Mack MC (2007) Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10:280–292

    Article  Google Scholar 

  • Shaver GR, Chapin FS III (1980) Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61(3):662–675

    Article  CAS  Google Scholar 

  • Shaver GR, Chapin FS III (1991) Production: biomass relationships and elemental cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–31

    Article  Google Scholar 

  • Shaver GR, Jonasson S (1999) Response of arctic ecosystems to climate change: Results of long-term field experiments in Sweden and Alaska. Polar Biol 18:245–252

    Google Scholar 

  • Shaver GR, Jonasson S (2001) Productivity of Arctic Ecosystems. In: Mooney H, Roy J, Saugier B (eds) Terrestrial global productivity. Academic Press, New York, pp 189–210

    Chapter  Google Scholar 

  • Shaver GR, Laundre JA (2006) Bulk precipitation collected during summer months on a per rain event basis at Toolik Field Station, North Slope of Alaska, Arctic LTER 1988–2007. http://dx.doi.org/10.6073/pasta/cb6e3030fb69d2bf9549d8fe529a67fd

  • Shaver GR, Billings WD, Chapin FS III, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of arctic ecosystems. Bioscience 42:433–441

    Article  Google Scholar 

  • Shaver GR, Bret-Harte SM, Jones MH, Johnstone J, Gough L, Laundre J, III Chapin FS (2001) Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82:3163–3181

    Article  Google Scholar 

  • Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–753

    Article  CAS  Google Scholar 

  • Shaver GR, Street LE, Rastetter EB, van Wijk MT, Williams M (2007) Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. J Ecol 95:802–817

    Article  Google Scholar 

  • Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497:615–618

    Article  PubMed  CAS  Google Scholar 

  • Sitch S, McGuire AD, Kimball J, Gedney N, Gamon J, Engstrom R, McDonald KC (2007) Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modelling. Ecol Appl 17:213–234

    Article  PubMed  Google Scholar 

  • Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K, Hinzman L, Yoshikawa K, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Petersen A, Zhou LM, Myneni R (2004) Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens Environ 89:281–308

    Article  Google Scholar 

  • Street LE, Shaver GR, Williams M, van Wijk MT (2007) What is the relationship between chances in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J Ecol 95:139–150

    Article  Google Scholar 

  • Street LE, Shaver GR, Rastetter EB, van Wijk MT, Kaye BA, Williams M (2012) Incident radiation and the allocation of nitrogen within arctic plant canopies: implications for predicting gross primary productivity. Glob Chang Biol 18:2838–2852

    Article  PubMed  Google Scholar 

  • Verbyla D (2008) The greening and browning of Alaska based on 1982–2003 satellite data. Glob Ecol Biogeogr 17:547–555

    Article  Google Scholar 

  • Walker DA, Epstein HE, Jia GJ, Balser A, Copass C, Edwards EJ, Raynolds MK (2003) Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J Geophys Res 108(D2):8169. doi:10.1029/2001JD000986

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci 103:1342–1346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weatherley LR, Miladinovic ND (2004) Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res 38:4305–4312

    Article  PubMed  CAS  Google Scholar 

  • Wilcox S (2012) National solar radiation database 1991–2010 update: user’s manual, Tech. Report NREL/TP-5500-54824, Golden, CO, USA. http://www.nrel.gov/docs/fy12osti/54824.pdf

  • Yano Y, Shaver GR, Giblin AE, Rastetter EB, Nadelhoffer KJ (2010) Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N. Ecol Monogr 80:331–351

    Article  Google Scholar 

  • Zhang K, Kimball JS, Hogg EH, Zhao MS, Oechel WC, Cassano JJ, Running SW (2008) Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J Geophys Res 113:G03033

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from NSF Grants # DEB-1026843, EF-1065587, and OPP-1107707 to the Marine Biological Laboratory, Woods Hole, MA. We acknowledge the use of Alaska Arctic Bioclimate Subzones map, Alaska Arctic Biomass map, and Alaska Arctic Vegetation map derived from the Toolik-Arctic Geobotanical Atlas (http://www.arcticatlas.org/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyang Jiang.

Additional information

Special issue: Macrosystems ecology: Novel methods and new understanding of multi-scale patterns and processes.

Guest Editors: S. Fei, Q. Guo, and K. Potter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Rocha, A.V., Rastetter, E.B. et al. C–N–P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska. Landscape Ecol 31, 195–213 (2016). https://doi.org/10.1007/s10980-015-0266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0266-5

Keywords

Navigation