Skip to main content

Advertisement

Log in

Moderate grazing promotes genetic diversity of Stipa species in the Inner Mongolian steppe

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Disturbances may affect the spatial patterns of plant genetic diversity, but these effects are not yet well understood for lack of direct experimental evidence. Grazing is one of such environmental disturbance factors which may lead to small-scale spatial heterogeneity in natural grasslands.

Objectives

Our main goal was to determine whether a grazing disturbance alters population genetic diversity and genetic structure of the dominant species in the Inner Mongolia Steppe.

Methods

We performed inter-simple sequence repeat (ISSR) molecular marker analysis on populations of Stipa grandis and S. krylovii which were exposed to five consecutive years of varying degrees of grazing disturbance.

Results

The amplification results showed that the genetic diversity of both S. grandis and S. krylovii populations varied under different grazing intensities; the highest diversity (Nei’s index and Shannon’s index) were under moderate disturbance, whereas the lowest under the heavy grazing. The coefficient of gene differentiation (GST) of S. grandis and S. krylovii populations were 16.82 and 21.00 °%, respectively. These results suggest that the genetic diversity of these two dominant populations was altered by the small-scale grazing disturbance, which provides new evidence supporting the theories of landscape genetics.

Conclusions

The enhancement of moderate grazing on genetic diversity implies the necessity to involve animal grazing in the design of management regimes for biodiversity conservation of the Inner Mongolia steppes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James PM, Rosenberg MS, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19(17):3565–3575

    Article  PubMed  Google Scholar 

  • Bai YF, Li DX, Xu ZX, Wei ZJ (1999) Growth and reproduction of Stipa krylovii population on a grazing gradient. Acta Ecol Sin 19(4):479–484

    Google Scholar 

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen J, Holderegger R, Wagner HH (2009) Identifying future research needs in landscape genetics: where to from here? Landscape Ecol 24(4):455–463

    Article  Google Scholar 

  • Banks SC, Cary GJ, Smith AL, Davies ID, Driscoll DA, Gill AM, Lindenmayer DB, Peakall R (2013) How does ecological disturbance influence genetic diversity? Trends Ecol Evol 28(11):670–679

    Article  PubMed  Google Scholar 

  • Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38(5):1261–1271

    Article  CAS  Google Scholar 

  • Bolliger J, Lander T, Balkenhol N (2014) Landscape genetics since 2003: status, challenges and future directions. Landscape Ecol 29(3):361–366

    Article  Google Scholar 

  • Boussaid M, Benito C, Harche M, Naranjo T, Zedek M (2010) Genetic variation in natural populations of Stipa tenacissima from Algeria. Biochem Genet 48(9–10):857–872

    Article  CAS  PubMed  Google Scholar 

  • Bruggeman DJ, Wiegand T, FernÁNdez N (2010) The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Mol Ecol 19(17):3679–3691

    Article  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1989) Some processes affecting the species composition in forest gaps. Ecology 70(3):560–562

    Article  Google Scholar 

  • Cushman S, Landguth E (2010) Scale dependent inference in landscape genetics. Landscape Ecol 25(6):967–979

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Freedman AH, Thomassen HA, Buermann W, Smith TB (2010) Genomic signals of diversification along ecological gradients in a tropical lizard. Mol Ecol 19(17):3773–3788

    Article  PubMed  Google Scholar 

  • Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19(17):3650–3663

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinaeur Press, Sunderland, pp 43–63

    Google Scholar 

  • Hirao AS, Kudo G (2004) Landscape genetics of alpine-snowbed plants: comparisons along geographic and snowmelt gradients. Heredity 93(3):290–298

    Article  CAS  PubMed  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58(3):199–207

    Article  Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15(12):675–683

    Article  CAS  PubMed  Google Scholar 

  • Igawa T, Oumi S, Katsuren S, Sumida M (2013) Population structure and landscape genetics of two endangered frog species of genus Odorrana: different scenarios on two islands. Heredity 110(1):46–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inner Mongolia-Ningxia Integrative Expert Team of the Chinese Academy of Science (1985) Vegetation of Inner Mongolia. Science Press, Beijing

    Google Scholar 

  • Jing Z, Yu J, Cheng J (2013) Genetic diversity of a dominant species Stipa bungeana and its conservation strategy in the Loess Plateau of China. Biochem Syst Ecol 47:126–131

    Article  CAS  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217(5129):624–626

    Article  CAS  PubMed  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164(3881):788–798

    Article  CAS  PubMed  Google Scholar 

  • King LM, Schaal BA (1989) Ribosomal-DNA variation and distribution in Rudbeckia missouriensis. Evolution 43(5):1117–1119

    Article  Google Scholar 

  • Kleijn D, Steinger T (2002) Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of veratrum album, an unpalatable, long-lived, clonal plant species. J Ecol 90(2):360–370

    Article  Google Scholar 

  • Li Y (1989) Impact of grazing on Aneurolepedium chinense steppe and Stipa grandis steppe. Acta Oecol/Oecol Appl 10(1):31–46

    Google Scholar 

  • Li Y, Wang S (1999) Response of plant and plant community to different stocking rates. Grassl China 3:11–19

    Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27(1):237–277

    Article  Google Scholar 

  • Liu W, Wang X, Gan YM, Huang LK, Xie WG, Miao JM (2009a) Genetic diversity of Kobresia pygmaea populations along a Grazing gradient. J Plant Ecol 33(5):966–973

    CAS  Google Scholar 

  • Liu WS, Dong M, Song ZP, Wei W (2009b) Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau. Ann Appl Biol 154(1):57–65

    Article  CAS  Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28(10):614–621

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18(4):189–197

    Article  Google Scholar 

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21(15):3729–3738

    Article  PubMed Central  PubMed  Google Scholar 

  • Matlaga D, Karoly K (2004) Long-term grazing effects on genetic variation in Idaho fescue. Rangel Ecol Manag 57(3):275–279

    Article  Google Scholar 

  • Mengli Z, Willms WD, Bing H, Laroche A (2005) Effects of heavy grazing pressure on the random amplified polymorphic DNA marker diversity of mountain rough fescue (Festuca campestris Rydb.) in south western Alberta. Can J Plant Sci 85(3):623–629

    Article  CAS  Google Scholar 

  • Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19(17):3634–3649

    Article  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70(12):3321–3323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nukazawa K, Kazama S, Watanabe K, Parmakelis A (2015) A hydrothermal simulation approach to modelling spatial patterns of adaptive genetic variation in four stream insects. J Biogeogr 42(1):103–113

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13(5):1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Phillipsen IC, Kirk EH, Bogan MT, Mims MC, Olden JD, Lytle DA (2015) Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Mol Ecol 24(1):54–69

    Article  PubMed  Google Scholar 

  • Rico Y, Holderegger R, Boehmer HJ, Wagner HH (2014) Directed dispersal by rotational shepherding supports landscape genetic connectivity in a calcareous grassland plant. Mol Ecol 23(4):832–842

    Article  PubMed  Google Scholar 

  • Rohlf FJ (2000) NTSYSpc: numerical taxonomy and multivariate analysis system, Version 2.1. Setauket, New York

    Google Scholar 

  • Rowe G, Beebee TJC, Burke T (1998) Phylogeography of the natterjack toad Bufo calamita in Britain: genetic differentiation of native and translocated populations. Mol Ecol 7(6):751–760

    Article  Google Scholar 

  • Schaal B, Hayworth D, Olsen K, Rauscher J, Smith W (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7(4):465–474

    Article  Google Scholar 

  • Shan D, Zhao M, Han B, Han G (2006) Examining the genetic diversity of Stipa grandis under various grazing pressures. Acta Ecol Sin 26(10):3175–3182

    Article  CAS  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43(7):1349–1368

    Article  Google Scholar 

  • Storfer A, Murphy M, Evans J, Goldberg C, Robinson S, Spear S, Dezzani R, Delmelle E, Vierling L, Waits L (2007) Putting the “landscape” in landscape genetics. Heredity 98(3):128–142

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liang CZ, Liu ZL, Hao DY (2000) Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecol Sin 24(3):268–274

    Google Scholar 

  • Wang J, Yang C, Yin J, Wang TJ (2004) Changes of the genetic diversity of Aremisia frigid population under the disturbance of grazing. Acta Ecol Sin 24:2465–2471

    Google Scholar 

  • Wang JL, Zhao NX, Gao YB, Lin F, Ren AZ, Ruan WB, Chen L (2006) RAPD analysis of genetic diversity and population genetic structure of Stipa krylovii Reshov. in Inner Mongolia steppe. Russ J Genet 42(5):468–475

    Article  CAS  Google Scholar 

  • Wang L, Liu C, Alves DG, Frank DA, Wang D (2013) Plant diversity is associated with the amount and spatial structure of soil heterogeneity in meadow steppe of China. Landscape Ecol. doi:10.1007/s10980-013-9955-0

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16(2):97–159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Hobbs RJ (eds) (2006) Key topics in landscape ecology. Cambridge University Press, NewYork

    Google Scholar 

  • Yeh FC, Yang R (1999) PopGene Version 1.32, Microsoft Windows-based freeware for population genetic analysis. University of Alberta, Alberta

    Google Scholar 

  • Zancolli G, Rödel MO, Steffan-Dewenter I, Storfer A (2014) Comparative landscape genetics of two river frog species occurring at different elevations on Mount Kilimanjaro. Mol Ecol 23(20):4989–5002

    Article  PubMed  Google Scholar 

  • Zhao NX, Gao YB, Wang JL, Ren AZ, Xu H (2006) RAPD diversity of Stipa grandis populations and its association with some ecological factors. Acta Ecol Sin 26(5):1312–1318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Frank Yonghong Li (Inner Mongolia University) for assistance with constructive modification on the manuscript, and Christine Verhille (University of British Columbia) for improving the language. The research is funded by the National Key Basic Research Program of China (No. 2014CB138802), the National Key Technology R&D Program (No. 2013BAC09B03) and the National Natural Science Foundation of China (No. 31160476).

Compliance with Ethical Standards

Our study site was rental from local pastoral farmers, who gave permission to the grazing experiment. The field experiment did not involve any threatened animals and plants. The manuscript has not been submitted to other journals and never been published previously. The data are given in good faith. All co-authors are informed consent and declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunzhu Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Liang, C., Niu, Y. et al. Moderate grazing promotes genetic diversity of Stipa species in the Inner Mongolian steppe. Landscape Ecol 30, 1783–1794 (2015). https://doi.org/10.1007/s10980-015-0227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0227-z

Keywords

Navigation