Skip to main content
Log in

The roles of troponin C isoforms in the mechanical function of Drosophila indirect flight muscle

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Stretch activation (SA) is a fundamental property of all muscle types that increases power output and efficiency, yet its mechanism is unknown. Recently, studies have implicated troponin isoforms as important in the SA mechanism. The highly stretch-activated Drosophila IFMs express two isoforms of the Ca2+-binding subunit of troponin (TnC). TnC1 (TnC-F2 in Lethocerus IFM) has two calcium binding sites, while an unusual isoform, TnC4 (TnC-F1 in Lethocerus IFM), has only one binding site. We investigated the roles of these two TnC isoforms in Drosophila IFM by targeting RNAi to each isoform. IFMs with TnC4 expression (normally ~90 % of total TnC) replaced by TnC1 did not generate isometric tension, power or display SA. However, TnC4 knockdown resulted in sarcomere ultrastructure disarray, which could explain the lack of mechanical function and thus make interpretation of the influence of TnC4 on SA difficult. Elimination of TnC1 expression (normally ~10 % of total TnC) by RNAi resulted in normal muscle structure. In these IFMs, fiber power generation, isometric tension, stretch-activated force and calcium sensitivity were statistically identical to wild type. When TnC1 RNAi was driven by an IFM specific driver, there was no decrease in flight ability or wing beat frequency, which supports our mechanical findings suggesting that TnC1 is not essential for the mechanical function of Drosophila IFM. This finding contrasts with previous work in Lethocerus IFM showing TnC1 is essential for maximum isometric force generation. We propose that differences in TnC1 function in Lethocerus and Drosophila contribute to the ~40-fold difference in IFM isometric tension generated between these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agianian B, Krzic U, Qiu F, Linke WA, Leonard K, Bullard B (2004) A troponin switch that regulates muscle contraction by stretch instead of calcium. Embo. J. 23:772–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bullard B, Pastore A (2011) Regulating the contraction of insect flight muscle. J. Muscle. Res. Cell. Motil .32:303–313. doi:10.1007/s10974-011-9278-1

    Article  CAS  PubMed  Google Scholar 

  • Burkart C et al (2007) Modular proteins from the Drosophila sallimus (sls) gene and their expression in muscles with different extensibility. J. Mol. Biol. 367:953–969

    Article  CAS  PubMed  Google Scholar 

  • Card G, Dickinson M (2008) Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol. 211:341–353

    Article  PubMed  Google Scholar 

  • Collins JH (1991) Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons. J. Muscle. Res. Cell. Motil. 12:3–25

    Article  CAS  PubMed  Google Scholar 

  • Cullen MJ (1974) The distribution of asynchronous muscle in insects with special reference to the Hemiptera: an electron microscope study. J. Entomol. 49A:17–41

    Google Scholar 

  • Dickinson MH et al (1997) Phosphorylation-dependent power output of transgenic flies: an integrated study. Biophys. J. 73:3122–3134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esch H, Goller F, Heinrich B (1991) How do bees shiver. Naturwissenschaften. 78:325–328. doi:10.1007/Bf01221422

    Article  Google Scholar 

  • Farman GP, Miller MS, Reedy MC, Soto-Adames FN, Vigoreaux JO, Maughan DW, Irving TC (2009) Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle. J. Struct. Biol. 168:240–249

  • Fukuda N, Granzier HL (2005) Titin/connectin-based modulation of the Frank–Starling mechanism of the heart. J. Muscle. Res. Cell. Motil. 26:319–323. doi:10.1007/s10974-005-9038-1

    Article  CAS  PubMed  Google Scholar 

  • Gagne SM, Li MX, McKay RT, Sykes BD (1998) The NMR angle on troponin C. Biochem. Cell. Biol. 76:302–312

    Article  CAS  PubMed  Google Scholar 

  • Granzier HLM, Wang K (1993) Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. J. Gen. Physiol. 101:235–270

    Article  CAS  PubMed  Google Scholar 

  • Heinrich B (1996) The thermal warriors: strategies of insect survival. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Herranz R, Diaz-Castillo C, Nguyen TP, Lovato TL, Cripps RM, Marco R (2004) Expression patterns of the whole troponin C gene repertoire during Drosophila development. Gene. Expr. Patterns. 4:183–190. doi:10.1016/j.modgep.2003.09.008

    Article  CAS  PubMed  Google Scholar 

  • Hyatt CJ, Maughan DW (1994) Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera. Biophys. J. 67:1149–1154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwamoto H, Inoue K, Yagi N (2010) Fast X-ray recordings reveal dynamic action of contractile and regulatory proteins in stretch-activated insect flight muscle. Biophys. J. 99:184–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Josephson RK, Malamud JG, Stokes DR (2000) Asynchronous muscle: a primer. J. Exp. Biol. 203:2713–2722

    CAS  PubMed  Google Scholar 

  • Josephson RK, Malamud JG, Stokes DR (2001) The efficiency of an asynchronous flight muscle from a beetle. J. Exp. Biol. 204:4125–4139

    CAS  PubMed  Google Scholar 

  • Katzemich A et al (2012) The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J. Cell. Sci. 125:3367–3379. doi:10.1242/jcs.097345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krzic U, Rybin V, Leonard KR, Linke WA, Bullard B (2010) Regulation of oscillatory contraction in insect flight muscle by troponin. J. Mol. Biol. 397:110–118. doi:10.1016/j.jmb.2010.01.039

    Article  CAS  PubMed  Google Scholar 

  • Lakey A, Labeit S, Gautel M, Ferguson C, Barlow DP, Leonard K, Bullard B (1993) Kettin, a large modular protein in the Z-disc of insect muscles. EMBO. J. 12:2863–2871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehman W, Galinska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J. Mol. Biol. 388:673–681. doi:10.1016/j.jmb.2009.03.060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann FO, Dickinson MH (1997) The changes in power requirements and muscle efficiency during elevated flight force production in the fruit fly. Drosophila. J. Exp. Biol. 200:1133–1143

    CAS  Google Scholar 

  • Linari M, Reedy MK, Reedy MC, Lombardi V, Piazzesi G (2004) Ca-activation and stretch-activation in insect flight muscle. Biophys. J. 87:1101–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys. J. 65:693–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moss RL, Fitzsimons DP (2002) Frank–Starling relationship: long on importance, short on mechanism. Circ. Res. 90:11–13

    Article  CAS  PubMed  Google Scholar 

  • Perz-Edwards RJ et al (2011) X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proc. Natl. Acad. Sci. USA. 108:120–125. doi:10.1073/pnas.1014599107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pringle JWS (1978) Stretch activation of muscle: function and mechanism. Proc. R. Soc. Lond. B. 201:107–130

    Article  CAS  PubMed  Google Scholar 

  • Pringle JWS (1981) The Bidder Lecture, 1980 the evolution of fibrillar muscle in insects. J. Exp. Biol. 94:1–45

    Google Scholar 

  • Qiu F, Lakey A, Agianian B, Hutchings A, Butcher GW, Labeit S, Bullard B (2003) Troponin C in different insect muscle types: identification of an isoform in Lethocerus, Drosophila and Anopheles that is specific to asynchronous flight muscle in the adult insect. Biochem. J. 371:811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramanath S, Wang Q, Bernstein SI, Swank DM (2011) Disrupting the myosin converter-relay interface impairs Drosophila indirect flight muscle performance. Biophys. J. 101:1114–1122. doi:10.1016/j.bpj.2011.07.045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reedy MC, Beall C (1993) Ultrastructure of developing flight muscle in Drosophila. I. Dev. Biol. 160:443–465

    Article  CAS  PubMed  Google Scholar 

  • Reedy MC, Beall C, Fyrberg E (1989) Formation of reverse rigor chevrons by myosin heads. Nature. 339:481–483. doi:10.1038/339481a0

    Article  CAS  PubMed  Google Scholar 

  • Rome LC et al (1999) Trading force for speed: why superfast crossbridge kinetics leads to superlow forces. Proc. Natl. Acad. Sci. USA. 96:5826–5831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenfeld SS, Taylor EW (1985) Kinetic studies of calcium binding to regulatory complexes from skeletal muscle. J. Biol. Chem. 260:252–261

    CAS  PubMed  Google Scholar 

  • Squire JM et al (2006) The myosin filament superlattice in the flight muscles of flies: a-band lattice optimisation for stretch-activation? J. Mol. Biol. 361:823–838. doi:10.1016/j.jmb.2006.06.072

    Article  CAS  PubMed  Google Scholar 

  • Swank DM (2012) Mechanical analysis of Drosophila indirect flight and jump muscles. Methods. 56:69–77. doi:10.1016/j.ymeth.2011.10.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swank DM, Knowles AF, Suggs JA, Sarsoza F, Lee A, Maughan DW, Bernstein SI (2002) The myosin converter domain modulates muscle performance. Nat. Cell. Biol. 4:312–317

    Article  CAS  PubMed  Google Scholar 

  • Swank DM, Kronert WA, Bernstein SI, Maughan DW (2004) Alternative N-terminal regions of Drosophila myosin heavy chain tune muscle kinetics for optimal power output. Biophys. J. 87:1805–1814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Syme DA, Josephson RK (1995) Influence of muscle length on work from trabecular muscle of frog atrium and ventricle. J. Exp. Biol. 198:2221–2227

    CAS  Google Scholar 

  • Thorson J, White DCS (1983) Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit skeletal muscle. J. Physiol. (Great Britain) 343:59–84

    CAS  PubMed Central  Google Scholar 

  • Tohtong R, Yamashita H, Graham M, Haeberle J, Simcox A, Maughan D (1995) Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature. 374:650–653

    Article  CAS  PubMed  Google Scholar 

  • Tu MS, Dickinson MH (1996) The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). J. Comp. Physiol. 178:813–830

    Article  CAS  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J. Mol. Biol. 266:8–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhao C, Swank DM (2011) Calcium and stretch activation modulate power generation in Drosophila flight muscle. Biophys. J. 101:2207–2213. doi:10.1016/j.bpj.2011.09.034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Newhard CS, Ramanath S, Sheppard D, Swank DM (2014) An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight. J. Exp. Biol. 217:290–298. doi:10.1242/jeb.091769

    Article  CAS  PubMed  Google Scholar 

  • Wray JS (1979) Filament geometry and the activation of insect flight muscles. Nature. 280:325–326

    Article  Google Scholar 

  • Yang C, Ramanath S, Kronert WA, Bernstein SI, Maughan DW, Swank DM (2008) Alternative versions of the myosin relay domain differentially respond to load to influence Drosophila muscle kinetics. Biophys. J. 95:5228–5237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zumstein N, Forman O, Nongthomba U, Sparrow JC, Elliott CJ (2004) Distance and force production during jumping in wild-type and mutant Drosophila melanogaster. J. Exp. Biol. 207:3515–3522

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Friederike Thiele (an Erasmus student, Department of Biology, University of York) for help with fluorescence and electron microscopy. We also thank Drs Upendra Nongthomba and John Sparrow for the UH3-GAL4 fly line, and Dr. John Sparrow for performing fly crosses. This work was supported by National Institutes of Health R01 AR055611 to D.M.S. A.K. was supported by a European Union FP6 Network of Excellence grant, MYORES. C.C.E. was supported by NIGMS Biomolecular Science and Engineering Training Grant 5T32GM067545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Swank.

Additional information

Catherine C. Eldred and Anja Katzemich have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldred, C.C., Katzemich, A., Patel, M. et al. The roles of troponin C isoforms in the mechanical function of Drosophila indirect flight muscle. J Muscle Res Cell Motil 35, 211–223 (2014). https://doi.org/10.1007/s10974-014-9387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-014-9387-8

Keywords

Navigation