Skip to main content
Log in

Exploring the dynamics of non-Newtonian Sutterby fluid conveying tiny particles along an inclined surface: insights into higher order chemical reactions and irreversibility

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Sequel to various studies on Sutterby fluids conveying tiny substances, nothing is known about the dynamics of non-Newtonian Sutterby fluid conveying tiny particles along an inclined surface due to quadratic thermal convection to provide insights into higher-order chemical reactions and irreversibility. This study on the dynamics of quadratic thermal convection in Sutterby nanofluids along an inclined plate provides insights into the interplay between higher-order chemical reactions and irreversibility phenomena as it is necessary for advancing the understanding of complex fluid dynamics and enhancing the design and optimization of thermal systems in various engineering and industrial applications. The momentum equation that capture the shear rate, shear stress, consistency index, flow behavior index, and characteristic length scale was adopted for the non-Newtonian Sutterby model. The entropy generation model that depends on the temperature gradient, velocity gradients, chemical reaction rates, mass transfer rates, and heat transfer coefficients was considered. The Buongiorno model which describes the behavior of tiny fluid conveyed by fluid that incorporates volume fraction of nanoparticles, Brownian motion parameter, and thermophoresis parameter was incorporated. The dimensional equations experienced a transformation into a non-dimensional form through appropriate conversions, facilitating the analysis. Employing the built-in function bvp4c in MATLAB, numerical simulations yield insightful results. Heightened chemical reaction rates and thermophoresis parameters lead to increased nanoparticle concentrations. The augmentation of the Brownian motion parameter amplifies the magnitude of the thermal field. Intriguingly, the dominance of shear-thickening fluid over shear-thinning fluid is observed in shaping velocity and temperature profiles. The influence of the Brinkman number is revealed to fortify the entropy profile while attenuating the Bejan number, underscoring the multifaceted nature of the studied phenomena.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study

References

  1. Goren SL. On free convection in water at 4 C. Chem Eng Sci. 1966;21(6–7):515–8.

    Article  CAS  Google Scholar 

  2. Vajravelu K, Sastri K. Fully developed laminar free convection flow between two parallel vertical walls-I. Int J Heat Mass Trans. 1977;20(6):655–60.

    Article  Google Scholar 

  3. Prasad K, Vajravelu K, Van Gorder RA. Non-Darcian flow and heat transfer along a permeable vertical surface with nonlinear density temperature variation. Acta Mech. 2011;220(1–4):139–54.

    Article  Google Scholar 

  4. RamReddy C, Naveen P, Srinivasacharya D. Influence of non-linear Boussinesq approximation on natural convective flow of a power-law fluid along an inclined plate under convective thermal boundary condition. Nonlinear Eng. 2019;8(1):94–106.

    Article  Google Scholar 

  5. Jha BK, Oni MO. Theory of fully developed mixed convection including flow reversal: a nonlinear Boussinesq approximation approach. Heat Transfer-Asian Res. 2019;48(8):3477–88.

    Article  Google Scholar 

  6. Mahanthesh B, Thriveni K, Lorenzini G. Significance of nonlinear Boussinesq approximation and non-uniform heat source/sink on nanoliquid flow with convective heat condition: sensitivity analysis. Eur Phys J Plus. 2021;136:1–18.

    Article  Google Scholar 

  7. Basavarajappa M, Myson S, Vajravelu K. Study of multilayer flow of a bi-viscous Bingham fluid sandwiched between hybrid nanofluid in a vertical slab with nonlinear Boussinesq approximation. Phys Fluids. 2022;34(12):122006.

    Article  CAS  Google Scholar 

  8. Myson S, Mahanthesh B. Sensitivity analysis of nonlinear convective heat transport of a hybrid nanoliquid sandwiched by micropolar liquid using RSM. Waves Random Complex Media. 2023. https://doi.org/10.1080/17455030.2022.2163433.

    Article  Google Scholar 

  9. Naveen P, RamReddy C. Quadratic convection in a power-law fluid with activation energy and suction/injection effects. Int J Ambient Energy. 2023;44(1):822–34.

    Article  Google Scholar 

  10. Upreti H, Pandey AK, Gupta T, Upadhyay S. Exploring the nanoparticle’s shape effect on boundary layer flow of hybrid nanofluid over a thin needle with quadratic Boussinesq approximation: Legendre wavelet approach. J Therm Anal Calorim. 2023;148(22):12669–86.

    Article  CAS  Google Scholar 

  11. Shende T, Niasar VJ, Babaei M. Effective viscosity and Reynolds number of non-Newtonian fluids using Meter model. Rheol Acta. 2021;60:11–21.

    Article  CAS  Google Scholar 

  12. Gabelle JC, Morchain J, Anne-Archard D, Augier F, Liné A. Experimental determination of the shear rate in a stirred tank with a non-newtonian fluid: carbopol. AIChE J. 2013;59(6):2251–66.

    Article  CAS  Google Scholar 

  13. Zhu H, Kim Y, De Kee D. Non-Newtonian fluids with a yield stress. J Non-Newtonian Fluid Mech. 2005;129(3):177–81.

    Article  CAS  Google Scholar 

  14. Animasaun IL, Shah NA, Wakif A, Mahanthesh B, Sivaraj R, Koríko OK. Ratio of momentum diffusivity to thermal diffusivity: introduction, meta-analysis, and scrutinization. CRC Press; 2022.

  15. Mir NA, Alqarni M, Farooq M, Malik M. Analysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo–Christov theory. Microsyst Technol. 2019;25:3365–73.

    Article  Google Scholar 

  16. Hayat T, Masood F, Qayyum S, Alsaedi A. Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation. Phys A: Stat Mech Appl. 2020;544:123439.

    Article  CAS  Google Scholar 

  17. Nawaz M. Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol. Phys A: Stat Mech Appl. 2020;537:122447.

    Article  CAS  Google Scholar 

  18. Bilal S, Shah IA, Akgül A, Tekin MT, Botmart T, Yahia I, et al. A comprehensive mathematical structuring of magnetically effected Sutterby fluid flow immersed in dually stratified medium under boundary layer approximations over a linearly stretched surface. Alex Eng J. 2022;61(12):11889–98.

    Article  Google Scholar 

  19. Shah NA, Animasaun I, Wakif A, Koriko O, Sivaraj R, Adegbie K, et al. Significance of suction and dual stretching on the dynamics of various hybrid nanofluids: comparative analysis between type I and type II models. Phys Scrip. 2020;95(9):095205.

    Article  CAS  Google Scholar 

  20. Li S, Ahmad S, Ali K, Hassan AM, Hamali W, Jamshed W. A mathematical approach for modeling the blood flow containing nanoparticles by employing the Buongiorno’s model. Nanotechnol Rev. 2023;12(1):20230139.

    Article  CAS  Google Scholar 

  21. Garoosi F, Talebi F. Numerical simulation of conjugate conduction and natural convection heat transfer of nanofluid inside a square enclosure containing a conductive partition and several disconnected conducting solid blocks using the Buongiorno’s two phase model. Powder Technol. 2017;317:48–71.

    Article  CAS  Google Scholar 

  22. Li S, Ahmad S, Ali K, Hassan AM, Hamali W, Jamshed W. A mathematical approach for modeling the blood flow containing nanoparticles by employing the Buongiorno’s model. Nanotechnol Rev. 2023;12(1):20230139.

    Article  CAS  Google Scholar 

  23. Wakif A, Animasaun I, Narayana PS, Sarojamma G. Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin J Phys. 2020;68:293–307.

    Article  CAS  Google Scholar 

  24. Turkyilmazoglu M. Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. Int J Heat Mass Trans. 2018;126:974–9.

    Article  CAS  Google Scholar 

  25. Khatun S, Nasrin R. Numerical modeling of Buongiorno’s nanofluid on free convection: thermophoresis and Brownian effects. J Naval Archit Mar Eng. 2021. https://doi.org/10.3329/jname.v18i2.54694.

    Article  Google Scholar 

  26. Buongiorno J. Convective transport in nanofluids; 2006.

  27. Reddy JR, Sugunamma V, Sandeep N. Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects. Alex Eng J. 2018;57(4):2465–73.

    Article  Google Scholar 

  28. Kumaran G, Sivaraj R, Subramanyam Reddy A, Rushi Kumar B, Ramachandra Prasad V. Hydromagnetic forced convective flow of Carreau nanofluid over a wedge/plate/stagnation of the plate. Eur Phys J Spec Top. 2019;228:2647–59.

    Article  CAS  Google Scholar 

  29. Kalpana G, Madhura K, Kudenatti RB. Magnetohydrodynamic boundary layer flow of hybrid nanofluid with the thermophoresis and Brownian motion in an irregular channel: a numerical approach. Eng Sci Technol Int J. 2022;32:101075.

    Google Scholar 

  30. Gajbhiye S, Warke A, Katta R. Role of electromagnetic analysis in radiative immiscible Newtonian and non-Newtonian fluids through a microchannel with chemical reactions. Heat Trans. 2022;51(7):6937–60.

    Article  Google Scholar 

  31. Gajbhiye S, Warke A, Ramesh K. Analysis of energy and momentum transport for Casson nanofluid in a microchannel with radiation and chemical reaction effects. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2097749.

    Article  Google Scholar 

  32. Ramesh K, Rawal M, Patel A. Numerical simulation of radiative MHD Sutterby nanofluid flow through porous medium in the presence of hall currents and electroosmosis. Int J Appl Comput Math. 2021;7:1–12.

    Article  Google Scholar 

  33. Ramesh K, Prakash J. Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim. 2019;138:1311–26.

    Article  CAS  Google Scholar 

  34. Sridhar V, Khashi’ie NS, Ramesh K. Thermal and electroosmotic transport of blood-copper/platinum nanofluid in a microfluidic vessel with entropy analysis. Proc Inst Mech Eng Part E: J Process Mech Eng. 2023. https://doi.org/10.1177/09544089231161306.

    Article  Google Scholar 

  35. Nield DA, Bejan A, et al. Convection in porous media. vol. 3. Springer; 2006.

  36. Murthy P. Thermal dispersion and viscous dissipation effects on non-Darcy mixed convection in a fluid saturated porous medium. Heat Mass Trans. 1998;33(4):295–300.

    Article  CAS  Google Scholar 

  37. Hayat T, Ayub S, Alsaedi A, Tanveer A, Ahmad B. Numerical simulation for peristaltic activity of Sutterby fluid with modified Darcy’s law. Res Phys. 2017;7:762–8.

    Google Scholar 

  38. RamReddy C, Naveen P, Srinivasacharya D. Effects of nonlinear convection and cross-diffusion for the flow of Darcy–Forchheimer model micropolar fluid with convective boundary condition. Comput Therm Sci: Int J. 2019;11(3):205–18.

    Article  Google Scholar 

  39. Sohail M, Naz R. Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder. Phys A: Stat Mech Appl. 2020;549:124088.

    Article  CAS  Google Scholar 

  40. Rauf A, Mabood F, Shehzad SA, Azeem A, Siddiq MK. Influence of Stefan blowing and variable thermal conductivity in magnetized flow of Sutterby nanofluid through porous medium. J Taibah Univ Sci. 2023;17(1):2234706.

    Article  Google Scholar 

  41. Bejan A. Second law analysis in heat transfer. Energy. 1980;5(8–9):720–32.

    Article  Google Scholar 

  42. Bejan A, Kestin J. Entropy generation through heat and fluid flow; 1983.

  43. Rahman M, Hayat T, Khan SA, Alsaedi A. Entropy generation in Sutterby nanomaterials flow due to rotating disk with radiation and magnetic effects. Math Comput Simul. 2022;197:151–65.

    Article  Google Scholar 

  44. Khan WA, Anjum N, Hobiny A, Ali M. Entropy generation analysis for chemically reactive flow of Sutterby nanofluid considering radiation aspects. Sci Iran; 2023

  45. Hussain Z, Khan W, Ali M, Shahid H, Irfan M. Simultaneous features of nonuniform heat sink/source and activation energy in entropy optimized flow of Sutterby fluid subject to thermal radiation. Int J Modern Phys B. 2023;37(21):2350208.

    Article  CAS  Google Scholar 

  46. Yusuf TA, Mabood F, Prasannakumara B, Sarris IE. Magneto-bioconvection flow of Williamson nanofluid over an inclined plate with gyrotactic microorganisms and entropy generation. Fluids. 2021;6(3):109.

    Article  CAS  Google Scholar 

  47. RamReddy C, Naveen P. Analysis of activation energy in quadratic convective flow of a micropolar fluid with chemical reaction and suction/injection effects. Multidiscip Model Mater Struct. 2020;16(1):169–90.

    Article  CAS  Google Scholar 

  48. Khan M, Shahid A, Malik M, Salahuddin T. Chemical reaction for Carreau–Yasuda nanofluid flow past a nonlinear stretching sheet considering Joule heating. Res Phys. 2018;8:1124–30.

    Google Scholar 

  49. RamReddy C, Naveen P. Analysis of activation energy and thermal radiation on convective flow of a power-law fluid under convective heating and chemical reaction. Heat Transf-Asian Res. 2019;48(6):2122–54.

    Article  Google Scholar 

  50. Mir NA, Farooq M, Rizwan M, Ahmad F, Ahmad S, Ahmad B, et al. Analysis of thermally stratified flow of Sutterby nanofluid with zero mass flux condition. J Mater Res Technol. 2020;9(2):1631–9.

    Article  Google Scholar 

  51. Ali B, Hussain S, Nie Y, Ali L, Hassan SU. Finite element simulation of bioconvection and cattaneo–Christov effects on micropolar based nanofluid flow over a vertically stretching sheet. Chin J Phys. 2020;68:654–70.

    Article  CAS  Google Scholar 

  52. Song YQ, Obideyi B, Shah NA, Animasaun I, Mahrous Y, Chung JD. Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface. Case Stud Ther Eng. 2021;26:101050.

    Article  Google Scholar 

  53. Cao W, Animasaun I, Yook SJ, Oladipupo V, Ji X. Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: ternary-hybrid nanofluid. Int Commun Heat Mass Trans. 2022;135:106069.

    Article  CAS  Google Scholar 

  54. Gireesha B, Dhanalakshmi R. Cattaneo–Christov heat flux model and multiple slip effect on carbon nanofluid over a stretching sheet in a Darcy–Forchheimer porous medium. Heat Trans. 2023;52(2):1840–65.

    Article  Google Scholar 

  55. Hayat T, Mustafa M, Pop I. Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid. Commun Nonlinear Sci Numer Simul. 2010;15(5):1183–96.

    Article  Google Scholar 

  56. Dero S, Shaikh H, Talpur GH, Khan I, Alharbim SO, Andualem M. Influence of a Darcy–Forchheimer porous medium on the flow of a radiative magnetized rotating hybrid nanofluid over a shrinking surface. Sci Rep. 2021;11(1):24257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ullah U, Shah SIA, Nisar KS, Khan H, Ullah N, Yousaf M. Numerical computation for dual stratification of slip flow of Sutterby nanofluids with heat generation features. Front Mater. 2023;10:1139284.

    Article  Google Scholar 

  58. Mumraiz S, Ali A, Awais M, Shutaywi M, Shah Z. Entropy generation in electrical magnetohydrodynamic flow of Al 2 O 3-Cu/H 2 O hybrid nanofluid with non-uniform heat flux. J Therm Anal Calorim. 2021;143:2135–48.

    Article  CAS  Google Scholar 

  59. Khan MI, Alzahrani F. Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation, Darcy–Forchheimer porous medium. Int J Hydrog Energy. 2021;46(1):1362–9.

    Article  CAS  Google Scholar 

  60. Sridhar V, Ramesh K. Performance of graphene and diamond nanoparticles on EMHD peristaltic flow model with entropy generation analysis. Phys Mesomech. 2022;25(2):168–80.

    Article  Google Scholar 

  61. Zhang Q, Tang A, Cai T, Huang Q. Analysis of entropy generation and exergy efficiency of the methane/dimethyl ether/air premixed combustion in a micro-channel. Int J Heat Mass Trans. 2024;218:124801.

    Article  CAS  Google Scholar 

  62. Vaidya H, Rajashekhar C, Manjunatha G, Wakif A, Prasad K, Animasaun I, et al. Analysis of entropy generation and biomechanical investigation of MHD Jeffery fluid through a vertical non-uniform channel. Case Stud Therm Eng. 2021;28:101538.

    Article  Google Scholar 

  63. Shah F, Khan MI, Chu YM, Kadry S. Heat transfer analysis on MHD flow over a stretchable Riga wall considering Entropy generation rate: a numerical study. Numer Methods Part Differ Equ. 2024;40(1):e22694.

    Article  Google Scholar 

  64. Rasool G, Saeed AM, Lare AI, Abderrahmane A, Guedri K, Vaidya H, et al. Darcy–Forchheimer flow of water conveying multi-walled carbon nanoparticles through a vertical cleveland Z-staggered cavity subject to entropy generation. Micromachines. 2022;13(5):744.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Abdeldjalil B, Animasaun I, Abderrahmane A, Mohammed S, Guedri K, Fadhl BM, et al. Insight into latent heat thermal energy storage: RT27 phase transition material conveying copper nanoparticles experiencing entropy generation with four distinct stepped fin surfaces. Int J Thermofluids. 2023. https://doi.org/10.1016/j.ijft.2023.100368.

    Article  Google Scholar 

  66. Mandal B, Bhattacharyya K, Banerjee A, Kumar Verma A, Kumar Gautam A. MHD mixed convection on an inclined stretching plate in Darcy porous medium with Soret effect and variable surface conditions. Nonlinear Eng. 2020;9(1):457–69.

    Article  Google Scholar 

  67. Sohut FH, Soid SK, Ishak A. A GUI for computing hybrid nanofluid boundary layer flow using bvp4c Solver in MATLAB: educational purposes for university students. J Adv Res Des. 2023;103(1):1–12.

    Google Scholar 

  68. Nasir NAAM, Ishak A, Pop I. Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking sheet. Chin J Phys. 2017;55(5):2081–91.

    Article  Google Scholar 

  69. Hale N, Moore D. A sixth-order extension to the MATLAB package bvp4c of J. Kierzenka and L. Shampine; 2008.

Download references

Author information

Authors and Affiliations

Authors

Contributions

PN, VS, and KV contributed to conceptualization, data curation, writing-original draft, methodology, and software PN, VS, KV, and TM done formal analysis, funding acquisition, investigation, validation, writing-review & editing, and project administration

Corresponding author

Correspondence to Padiegepati Naveen.

Ethics declarations

Conflict of interest

No conflicts of interest have been disclosed by the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveen, P., Vasanth Suriya, V.M., Vajravelu, K. et al. Exploring the dynamics of non-Newtonian Sutterby fluid conveying tiny particles along an inclined surface: insights into higher order chemical reactions and irreversibility. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13119-2

Keywords

Navigation