Skip to main content
Log in

The artificial neural network analysis of the flow of thin film hybrid nanofluid with variable film thickness in a variable porous medium over a rotating disk

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thin film hybrid nanofluid (HNF) flow over a rotating stretching disk is considered for heat transfer (HT) enhancement applications. The water-based HNF consists of Ag and TiO2 nanoparticles (NPs). The film thickness is kept variable and the flow medium is also considered porous and variable. The variable porous space for the variable thickness of the thin film is the main focus of the present analysis. The variable thickness of the thin film improves heat transfer (HT) between the rotating disk and the surrounding fluid. Thicker film layers provide increased thermal resistance, reducing the (HT) rate, while thinner film layers enhance (HT) by minimizing the thermal resistance. Controlling the thickness of the film through the variable porous space allows for the optimization of (HT) in various engineering applications. Additionally, the presence of Ag and TiO2 nanoparticles (NPs) in the water-based HNF further enhances the heat transfer properties, making it an attractive option for heat transfer (HT) enhancement applications. Moreover, the stability of the variable thin film is more adjustable in the variable porous space. The artificial neural network is used to solve the problem and validate the obtained results, through Training, Testing, and error estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the author.

Abbreviations

\(u,\,v\,{\text{and}}\,\,w\) :

Components of the velocity \(\left( {{\text{ms}}^{ - 1} } \right)\)

\(\wp_{0}\) :

Ambient porosity

\(m\) :

Particle diameter \(\left( {\text{m}} \right)\)

\(F^{\prime}\) :

Dimensionless radial velocity

\(\Omega\) :

Disk rotating rate

\(\Pr\) :

Prandtl number

\(T\) :

Free surface temperature \(\left( {\text{K}} \right)\)

\({\text{Da}}\) :

Permeability parameter

\(G\) :

Dimensionless azimuthal velocity

\(T_{0}\) :

Disk surface temperature \(\left( {\text{K}} \right)\)

\(r,\varphi ,z\) :

Cylindrical coordinates

\(k\) :

Thermal conductivity (\({\text{Wm}}^{ - 1} {\text{K}}^{ - 1}\))

\({\text{Re}}\) :

Reynolds number

\(S\) :

Unsteadiness parameter

\(C_{{\text{p}}}\) :

Heat capacitance \((\text{J}\, \text{kg}^{-1}\, \text{K}^{-1})\)

\({\text{Nu}}\) :

Nusselt number

\(C_{{\text{f}}}\) :

Skin friction

\(\rho\) :

Density\(\left( {\text{Kgm}}^{ - 3}\right)\)

\(\mu\) :

Dynamic viscosity \(\left( {{\text{mPa}}} \right)\)

\(\alpha\) :

Rotating parameter

\(\phi\) :

Nanoparticle volume fraction

\(\beta\) :

Dimensionless thin film thickness

\(\theta\) :

Dimensionless temperature

\(\eta\) :

Similarity variable

HNFs:

Hybrid nanofluids

ANN:

Artificial neural network

HAM:

Homotopy analysis method

NPs:

Nanoparticles

TC:

Thermal conductivity

HT:

Heat transfer

hnf:

Hybrid nanofluid

nf:

Nanofluid

References

  1. Obrien SBG, Schwartz LW. Theory and modeling of thin film flows. Encycl Surf Colloid Sci. 2002;1:5283–97.

    Google Scholar 

  2. Butt MA. Thin-film coating methods: a successful marriage of high-quality and cost-effectiveness—a brief exploration. Coatings. 2022;12(8):1115.

    Article  CAS  Google Scholar 

  3. Hamrock BJ, Schmid SR, Jacobson BO. Fundamentals of fluid film lubrication. CRC press. 2004.

  4. Abichandani H, Sarma SC. Evaporation in a horizontal thin film scraped surface heat exchanger. J Food Process Eng. 1991;14(3):173–87.

    Article  Google Scholar 

  5. Toudeshkchoui MG, Rabiee N, Rabiee M, Bagherzadeh M, Tahriri M, Tayebi L, Hamblin MR. Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review. Biomed Microdev. 2019;21:1–17.

    Article  Google Scholar 

  6. Jensen KF, Einset EO, Fotiadis DI. Flow phenomena in chemical vapor deposition of thin films. Annual Rev Fluid Mech. 1991;23(1):197–232.

    Article  Google Scholar 

  7. Khan NS, Gul T, Islam S, Khan I, Alqahtani AM, Alshomrani AS. Magnetohydrodynamic nanoliquid thin film sprayed on a stretching cylinder with heat transfer. Appl Sci. 2017;7(3):271.

    Article  Google Scholar 

  8. Rashid U, Liang H, Ahmad H, Abbas M, Iqbal A, Hamed YS. Study of (Ag and TiO2)/water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder. Results Phys. 2021;21: 103812.

    Article  Google Scholar 

  9. Malik MF, Shah SAA, Bilal M, Hussien M, Mahmood I, Akgul A, Az-Zo’bi EA. New insights into the dynamics of heat and mass transfer in a hybrid (Ag-TiO2) nanofluid using Modified Buongiorno model: a case of a rotating disk. Results Phys. 2023;53:106906.

    Article  Google Scholar 

  10. Bouselsal M, Mebarek-Oudina F, Biswas N, Ismail AAI. Heat transfer enhancement using Al2O3-MWCNT hybrid-nanofluid inside a tube/shell heat exchanger with different tube shapes. Micromachines. 2023;14(5):1072.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ullah AZ, Guo X, Gul T, Ali I, Saeed A, Galal AM. Thin film flow of the ternary hybrid nanofluid over a rotating disk under the influence of magnetic field due to nonlinear convection. J Magn Magn Mater. 2023;573: 170673.

    Article  Google Scholar 

  12. Fakour M, Rahbari A, Khodabandeh E, Ganji DD. Nanofluid thin film flow and heat transfer over an unsteady stretching elastic sheet by LSM. J Mech Sci Technol. 2018;32:177–83.

    Article  Google Scholar 

  13. Jawad M, Shah Z, Khan A, Islam S, Ullah H. 2019 Three-dimensional magnetohydrodynamic nanofluid thin-film flow with heat and mass transfer over an inclined porous rotating disk. Adv Mech Eng. 2019;11(8):1687814019869757.

    Article  CAS  Google Scholar 

  14. Riasat S, Ramzan M, Kadry S, Chu YM. Significance of magnetic Reynolds number in a three-dimensional squeezing Darcy-Forchheimer hydromagnetic nanofluid thin-film flow between two rotating disks. Sci Rep. 2020;10(1):17208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Usman M, Gul T, Khan A, Alsubie A, Ullah MZ. Electromagnetic couple stress film flow of hybrid nanofluid over an unsteady rotating disc. Int Commun Heat Mass Transfer. 2021;127: 105562.

    Article  CAS  Google Scholar 

  16. Tassaddiq A, Khan S, Bilal M, Gul T, Mukhtar S, Shah Z, Bonyah E. Heat and mass transfer together with hybrid nanofluid flow over a rotating disk. AIP Adv. 2020. https://doi.org/10.1063/5.0010181.

    Article  Google Scholar 

  17. Tripathi R. Marangoni convection in the transient flow of hybrid nanoliquid thin film over a radially stretching disk. Proc Inst Mech Eng, Part E: J Process Mech Eng. 2021;235(4):800–11.

    Article  CAS  Google Scholar 

  18. Malik MF, Shah SAA, Bilal M, Hussien M, Mahmood I, Akgul A, Az-Zo’bi EA. New insights into the dynamics of heat and mass transfer in a hybrid (Ag-TiO2) nanofluid using modified buongiorno model: a case of a rotating disk. Results Phys. 2023;53:106906.

    Article  Google Scholar 

  19. Gamachu D, Ibrahim W. Mixed convection flow of viscoelastic Ag-Al2O3/water hybrid nanofluid past a rotating disk. Phys Scr. 2021;96(12): 125205.

    Article  Google Scholar 

  20. Alkuhayli NAM. Heat transfer analysis of a hybrid nanofluid flow on a rotating disk considering thermal radiation effects. Case Studies in Thermal Eng. 2023;2023: 103131.

    Article  Google Scholar 

  21. Haider F, Hayat T, Alsaedi A. Flow of hybrid nanofluid through Darcy-Forchheimer porous space with variable characteristics. Alex Eng J. 2021;60(3):3047–56.

    Article  Google Scholar 

  22. Tijani YO, Akolade MT, Mohd Kasim AR. Transport features on bidirectional nanofluid flow with convective heating and variable darcy regime. J Comput Theoret Transport. 2023;52(5):343–62.

    Article  Google Scholar 

  23. Tlau L, Ontela S. Entropy analysis of hybrid nanofluid flow in a porous medium with variable permeability considering isothermal/isoflux conditions. Chin J Phys. 2022;80:239–52.

    Article  CAS  Google Scholar 

  24. Sangeetha E, De P, Das R. HALL and ION effects on bioconvective maxwell nanofluid IN NON-Darcy porous medium. Special Top Rev Porous Media: An Int J. 2023. https://doi.org/10.1615/SpecialTopicsRevPorousMedia.v14.i4.10.

    Article  Google Scholar 

  25. Akbar NS, Muhammad T. Physical aspects of electro osmotically interactive Cilia propulsion on symmetric plus asymmetric conduit flow of couple stress fluid with thermal radiation and heat transfer. Sci Rep. 2023;13(1):18491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muhammad T, Alamri SZ, Waqas H, Habib D, Ellahi R. Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J Therm Anal Calorim. 2021;143:945–57.

    Article  CAS  Google Scholar 

  27. Muhammad T, Waqas H, Khan SA, Ellahi R, Sait SM. Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim. 2021;143:929–44.

    Article  CAS  Google Scholar 

  28. Shijun L. Homotopy analysis method: a new analytic method for nonlinear problems. Appl Math Mech. 1998;19:957.

    Article  Google Scholar 

  29. Alghamdi W, Gul T, Nullah M, Rehman A, Nasir S, Saeed A, Bonyah E. Boundary layer stagnation point flow of the Casson hybrid nanofluid over an unsteady stretching surface. AIP Adv. 2021. https://doi.org/10.1063/5.0036232.

    Article  Google Scholar 

  30. Raja MAZ, Shoaib M, Khan Z, Zuhra S, Saleel CA, Nisar KS, Khan I. Supervised neural networks learning algorithm for three dimensional hybrid nanofluid flow with radiative heat and mass fluxes. Ain Shams Eng J. 2022;13(2):101573.

    Article  Google Scholar 

  31. Hamrelaine S, Mebarek-Oudina F, Sari MR. Analysis of MHD Jeffery Hamel flow with suction/injection by homotopy analysis method. J Adv Res Fluid Mech Therm Sci. 2019;58(2):173–86.

    Google Scholar 

  32. Lone SA, Khan A, Gul T, Mukhtar S, Alghamdi W, Ali I. Entropy generation for stagnation point dissipative hybrid nanofluid flow on a Riga plate with the influence of nonlinear convection using neural network approach. Colloid Polym Sci. 2024. https://doi.org/10.1007/s00396-024-05227-0.

    Article  Google Scholar 

  33. Öcal S, Gökçek M, Çolak AB, Korkanç M. A comprehensive and comparative experimental analysis on thermal conductivity of TiO2-CaCO3/Water hybrid nanofluid: proposing new correlation and artificial neural network optimization. Heat Transf Res. 2021;52(17):55–79.

    Article  Google Scholar 

  34. Thong Z, Tan JYY, Loo ES, Phua YW, Chan XLS, Syn CKC. Artificial neural network, predictor variables and sensitivity threshold for DNA methylation-based age prediction using blood samples. Sci Rep. 2021;11(1):1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The author extends the appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through the project number (R-2024-1009).

Author information

Authors and Affiliations

Authors

Contributions

All the work done by the author including modeling, solution and manuscript writing.

Corresponding author

Correspondence to Sayer Obaid Alharbi.

Ethics declarations

Conflict of interest

The authors declare that no such interest exists.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, S.O. The artificial neural network analysis of the flow of thin film hybrid nanofluid with variable film thickness in a variable porous medium over a rotating disk. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13077-9

Keywords

Navigation