Skip to main content
Log in

Effect of heat source/sink and thermal radiation on an unsteady MHD Casson flow past over an exponentially accelerated vertical plate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study examines the behavior of an unsteady magnetohydrodynamic Casson fluid past over an exponentially accelerated vertical plate in a rotating system. The flow is driven by the combined effects of thermal radiation, heat source/sink, chemical reaction and Hall current taken into account. The non-dimensional equations governing the system are solved using the Laplace transform technique, yielding expressions that offer insights into velocity, temperature and concentration profiles. The axial velocity decreases with increasing thermal radiation and chemical reaction, while it increases with Casson and heat source/sink. The current findings are compared with previous studies, revealing substantial agreement. Additionally, the study examines skin friction, heat transfer and mass transfer rates. The insights gained from the heat transport processes have implications across various applications in cooling systems, aerospace engineering and energy storage technologies. The results of this study have direct relevance in engineering applications and are determined analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

\(\bar{T}\) :

Fluid temperature close to the plate (K)

\(\bar{T}_\infty\) :

Temperature of the fluid far away from the plate (K)

\(\bar{T}_\textrm{w}\) :

Temperature of the plate (K)

\(\bar{C}\) :

Fluid concentration close the plate (kg m\(^{-3}\))

\(\bar{C}_\infty\) :

Concentration of the fluid far away from the plate (kg m\(^{-3}\))

\(\bar{C}_\textrm{w}\) :

Concentration of the plate (kg m\(^{-3}\))

\(\bar{t}\) :

Time (s\(^{-1}\))

D :

Diffusion term (m\(^2\) s\(^{-1}\))

g :

Acceleration due to gravity (m s\(^{-2}\))

\(C_\textrm{p}\) :

The specific heat at constant pressure (J K\(^{-1}\) Kg\(^{-1}\))

\(q_\textrm{r}\) :

The radiative flux (W)

\(a^*\) :

The co-efficient of heat absorption (J K\(^{-1}\))

\(\vec {j}\) :

The current density vector (A m\(^{-2}\))

\(\vec {q}\) :

The velocity vector (m s\(^{-1}\))

\(\vec {E}\) :

The electric field vector (V m\(^{-1}\))

\(M_0\) :

The vector magnetic field (N m A\(^{-1}\))

\(\omega _\textrm{e}\) :

The cycoltron frequency (Hz)

Gr:

Thermal Grashof number

Gc:

Mass Grashof number

Pr:

The Prandtl number

Sc:

The Schmidt number

\(R_\textrm{a}\) :

The dimensionless thermal radiation parameter

\(H_\textrm{T}\) :

The dimensionless heat source/sink parameter

\(K_\textrm{c}\) :

The dimensionless chemical reaction parameter

a :

The acceleration parameter

m :

Hall parameter

M :

Hartmann number

t :

Dimensionless time (s\(^{-1}\))

uv :

Fluid velocity components (m \(s^{-1}\))

UV :

The dimensionless velocity components (m s\(^{-1}\))

H :

Axial velocity (m s\(^{-1}\))

C :

Dimensionless concentration

erfc:

Complementary error function

Nu:

Dimensionless Nusselt number

Sh:

Dimensionless Sherwood number

\(\beta\) :

The casson fluid parameter

\(\beta ^{\prime }_\textrm{T}\) :

The volumetric co-efficient of thermal expansion (m\(^3\) kg\(^{-1}\))

\(\beta ^{\prime }_\textrm{C}\) :

The volumetric co-efficient of concentration expansion (m\(^3\) kg\(^{-1}\))

\(\rho\) :

Density of the fluid (kg m\(^3\))

\(\mu\) :

Dynamic viscosity (kg m\(^{-1}\) s\(^{-1}\))

\(\nu\) :

Kinematic viscosity (m\(^{2}\) s\(^{-1}\))

\(\sigma\) :

The electrical conductivity of the fluid (W m\(^{-1}\) \(K^{-1}\))

\(\sigma ^*\) :

The Stefan–Boltzmann constant (W m\(^{-1}\) K\(^{-1}\))

\(\tau _\textrm{e}\) :

The collision time of electron

\(\tau\) :

Dimensionless skin friction

\(\eta\) :

Similarity parameter

\(\theta\) :

Dimensionless temperature

\({\bar{\Omega }}\) :

Angular velocity (m s\(^{-1}\))

\(\Omega\) :

Dimensionless rotation parameter

w :

Conditions at the wall

\(\infty\) :

Free stream conditions

References

  1. Casson N. Flow equation for pigment-oil suspensions of the printing ink-type. Rheol Disperse Syst. 1959;84–104.

  2. Kataria H, Patel H. Heat and mass transfer in magnetohydrodynamic (MHD) Casson fluid flow past over an oscillating vertical plate embedded in porous medium with ramped wall temperature. Propuls Power Res. 2018;7(3):257–67. https://doi.org/10.1016/j.jppr.2018.07.003.

    Article  Google Scholar 

  3. Dash RK, Mehta KN, Jayaraman G. Casson fluid flow in a pipe filled with a homogeneous porous medium. Int J Eng Sci. 1996;34(10):1145–56. https://doi.org/10.1016/0020-7225(96)00012-2.

    Article  CAS  Google Scholar 

  4. Fung YC. Biodynamics: circulation. New York: Springer; 1984.

    Book  Google Scholar 

  5. Mukhopadhyay S. Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing. Chin Phys B. 2013;22(11): 114702. https://doi.org/10.1088/1674-1056/22/11/114702.

    Article  Google Scholar 

  6. Khalid A, Khan I, Khan A, Shafie S. Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng Sci Technol Int J. 2015;18(3):309–17. https://doi.org/10.1016/j.jestch.2014.12.006.

    Article  Google Scholar 

  7. Mahanta G, Shaw S. 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition. Alex Eng J. 2015;54(3):653–9. https://doi.org/10.1016/j.aej.2015.04.014.

    Article  Google Scholar 

  8. Pramanik S. Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Eng J. 2014;5(1):205–12. https://doi.org/10.1016/j.asej.2013.05.003.

    Article  Google Scholar 

  9. Seth GS, Sarkar S, Hussain SM. Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate. Ain Shams Eng J. 2014;5(2):489–503. https://doi.org/10.1016/j.asej.2013.09.014.

    Article  Google Scholar 

  10. Seth GS, Hussain SM, Sarkar S. Effects of Hall current and rotation on unsteady MHD natural convection flow with heat and mass transfer past an impulsively moving vertical plate in the presence of radiation and chemical reaction. Bulg Chem Commun. 2014;46(4):704–18.

    Google Scholar 

  11. Seth GS, Kumbhakar B, Sarkar S. Unsteady hydromagnetic natural convection flow with heat and mass transfer of a thermally radiating and chemically reactive fluid past a vertical plate with Newtonian heating and time dependent free stream. Int J Heat Technol. 2014;32(1–2):87–94.

    Google Scholar 

  12. Seth GS, Sharma R, Sarkar S. Natural convection heat and mass transfer flow with Hall current, rotation, radiation and heat absorption past an accelerated moving vertical plate with ramped temperature. J Appl Fluid Mech. 2014;8(1):7–20. https://doi.org/10.36884/jafm.8.01.22600.

    Article  Google Scholar 

  13. Seth GS, Sarkar S, Hussain SM, Mahato GK. Effects of Hall current and rotation on hydromagnetic natural convection flow with heat and mass transfer of a heat absorbing fluid past an impulsively moving vertical plate with ramped temperature. J Appl Fluid Mech. 2014;8(1):159–71. https://doi.org/10.36884/jafm.8.01.20437.

    Article  Google Scholar 

  14. Seth GS, Kumbhakar B, Sharma R. Unsteady MHD free convection flow with Hall effect of a radiating and heat absorbing fluid past a moving vertical plate with variable ramped temperature. J Egypt Math Soc. 2016;24(3):471–8. https://doi.org/10.1016/j.joems.2015.07.007.

    Article  MathSciNet  Google Scholar 

  15. Seth GS, Sarkar S. MHD natural convection heat and mass transfer flow past a time dependent moving vertical plate with ramped temperature in a rotating medium with Hall effects, radiation and chemical reaction. J Mech. 2015;31(1):91–104. https://doi.org/10.1017/jmech.2014.71.

    Article  CAS  Google Scholar 

  16. Ahmed S, Batin A, Chamkha AJ. Numerical/Laplace transform analysis for MHD radiating heat/mass transport in a Darcian porous regime bounded by an oscillating vertical surface. Alex Eng J. 2015;54(1):45–54. https://doi.org/10.1016/j.aej.2014.11.006.

    Article  Google Scholar 

  17. Nayak MK, Dash GC, Singh LP. Heat and mass transfer effects on MHD viscoelastic fluid over a stretching sheet through porous medium in presence of chemical reaction. Propuls Power Res. 2016;5(1):70–80. https://doi.org/10.1016/j.jppr.2016.01.006.

    Article  Google Scholar 

  18. Ali F, Khan I, Shafie S. Closed form solutions for unsteady free convection flow of a second grade fluid over an oscillating vertical plate. PLoS ONE. 2014;9(2): e85099. https://doi.org/10.1371/journal.pone.0085099.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mustafa M, Hayat T, Pop I, Aziz A. Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transf Res. 2011;40(6):563–76. https://doi.org/10.1002/htj.20358.

    Article  Google Scholar 

  20. Mukhopadhyay S. Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing. Chin Phys B. 2013;22(11): 114702. https://doi.org/10.1088/1674-1056/22/11/114702.

    Article  Google Scholar 

  21. Deka AK. In presence of thermal radiation through porous medium unsteady MHD Casson fluid flow past an accelerated vertical plate. Int J Stat Appl Math. 2020;5:213–28.

    Google Scholar 

  22. Anantha Kumar K, Sugunamma V, Sandeep N. Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet. J Therm Anal Calorim. 2020;140:2377–85. https://doi.org/10.1007/s10973-019-08977-0.

    Article  CAS  Google Scholar 

  23. Sulochana C, Aparna SR, Sandeep N. Heat and mass transfer of magnetohydrodynamic Casson fluid flow over a wedge with thermal radiation and chemical reaction. Heat Transf. 2021;50(4):3704–21. https://doi.org/10.1002/htj.22049.

    Article  Google Scholar 

  24. Bilal S, Asogwa KK, Alotaibi H, Malik MY, Khan I. Analytical treatment of radiative Casson fluid over an isothermal inclined Riga surface with aspects of chemically reactive species. Alex Eng J. 2021;60(5):4243–53. https://doi.org/10.1016/j.aej.2021.03.015.

    Article  Google Scholar 

  25. Osman HI, Vieru D, Ismail Z. Transient axisymmetric flows of Casson fluids with generalized Cattaneo’s law over a vertical cylinder. Symmetry. 2022;14(7):1319. https://doi.org/10.3390/sym14071319.

    Article  ADS  CAS  Google Scholar 

  26. Saeed A, Algehyne EA, Aldhabani MS, Dawar A, Kumam P, Kumam W. Mixed convective flow of a magnetohydrodynamic Casson fluid through a permeable stretching sheet with first-order chemical reaction. PLoS ONE. 2022;17(4): e0265238. https://doi.org/10.1371/journal.pone.0265238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bejawada SG, Reddy YD, Jamshed W, Nisar KS, Alharbi AN, Chouikh R. Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium. Alex Eng J. 2022;61(10):8207–20. https://doi.org/10.1016/j.aej.2022.01.043.

    Article  Google Scholar 

  28. Mohan SR, Maheshbabu N. An unsteady heat transfer flow of Casson fluid through porous medium with aligned magnetic field and thermal radiation. Adv Dyn Syst Appl. 2022;17(1):157–75.

    Google Scholar 

  29. Rasheed HU, Islam S, Zeeshan Khan W, Khan J, Abbas T. Numerical modeling of unsteady MHD flow of Casson fluid in a vertical surface with chemical reaction and Hall current. Adv Mech Eng. 2022;14(3):16878132221085429. Articles https://doi.org/10.1177/1687813222108542.

  30. Sarala S, Geetha E, Nirmala M. Numerical investigation of heat transfer & Hall effects on MHD nanofluid flow past over an oscillating plate with radiation. J Therm Eng. 2022;8(6):757–71. https://doi.org/10.18186/thermal.1201859.

    Article  Google Scholar 

  31. Pattnaik JR, Dash GC, Singh S. Radiation and mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature. Ain Shams Eng J. 2017;8(1):67–75. https://doi.org/10.1016/j.asej.2015.08.014.

    Article  Google Scholar 

  32. Kumaar V, Muthucumarasamy R, Manjula L. Hall effect unsteady flow past an isothermal vertical plate in a rotating fluid with variable mass diffusion in the presence of chemical reaction of first order. Adv Math Sci J. 2020;9(5):2749–59. https://doi.org/10.37418/amsj.9.5.37.

    Article  Google Scholar 

  33. Manjula L, Muthucumaraswamy R. Heat and mass transfer effect on an infinite vertical plate in the presence of hall current and thermal radiation with variable temperature. Int J Appl Mech Eng. 2021;26(3):131–40. https://doi.org/10.2478/ijame-2021-0040.

    Article  CAS  Google Scholar 

  34. Burgers JM. Magnetohydrodynamics, by TG COWLING, New York: Interscience Publishers, Inc., 1957. 115 pp. J Fluid Mech. 1958;3(5):550–2. https://doi.org/10.1017/S0022112058220181.

    Article  Google Scholar 

  35. Kataria HR, Patel HR. Effects of chemical reaction and heat generation/absorption on magnetohydrodynamic (MHD) Casson fluid flow over an exponentially accelerated vertical plate embedded in porous medium with ramped wall temperature and ramped surface concentration. Propuls Power Res. 2019;8(1):35–46. https://doi.org/10.1016/j.jppr.2018.12.001.

    Article  Google Scholar 

  36. Rosseland S. Astrophysik und atom-theoretische Grundlagen. Berlin: Springer; 1931.

    Book  Google Scholar 

  37. Nandkeolyar R, Das M, Sibanda P. Exact solutions of unsteady MHD free convection in a heat absorbing fluid flow past a flat plate with ramped wall temperature. Bound Value Probl. 2013;2013:1–6. https://doi.org/10.1186/1687-2770-2013-247.

    Article  MathSciNet  Google Scholar 

  38. Seth GS, Hussain SM, Sarkar S. Hydromagnetic natural convection flow with heat and mass transfer of a chemically reacting and heat absorbing fluid past an accelerated moving vertical plate with ramped temperature and ramped surface concentration through a porous medium. J Egypt Math Soc. 2015;23(1):197–207. https://doi.org/10.1016/j.joems.2014.03.006.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. R. Tamizharasi and T. Aghalya contributed equally to the design, implementation and analysis of the research and to the writing of the manuscript.

Corresponding author

Correspondence to R. Tamizharasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies involving human participants and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

\(\bar{a} = \frac{2M^2}{m^2+1}+2i\left( \Omega -\frac{M^2m}{m^2+1}\right)\)

\(\alpha _0 = \textrm{Sc}\)

\(\alpha _1 = \frac{\textrm{Pr}}{1+R_\textrm{a}}\)

\(\alpha _2 = \frac{{\bar{a}}-\beta H_\textrm{T}\alpha _1}{\beta \alpha _1-1}\)

\(\alpha _3 = \frac{\beta }{\beta \alpha _1-1}\)

\(\alpha _4 = \frac{{\bar{a}}-\beta \alpha _0K_\textrm{c}}{\beta \alpha _0-1}\)

\(\alpha _5 = \frac{\beta }{\beta \alpha _0-1}\)

\(s_0 = \sqrt{\frac{{\bar{a}}}{\beta }}\)

\(s_1 = \sqrt{\frac{{\bar{a}}+a}{\beta }}\)

\(s_2 = \sqrt{\alpha _1(H_\textrm{T}+\alpha _2)}\)

\(s_3 = \sqrt{\alpha _0(K_\textrm{c}+\alpha _4)}\)

\(s_4 = \sqrt{\frac{{\bar{a}}+\alpha _2}{\beta }}\)

\(s_5 = \sqrt{\frac{{\bar{a}}+\alpha _4}{\beta }}\)

\(s_6 = \sqrt{H_\textrm{T}\alpha _1}\)

\(s_7 = \sqrt{K_\textrm{c}\alpha _0}\)

\(s_8 = \left( t\sqrt{\frac{{\bar{a}}}{\beta }}-\frac{1}{2\sqrt{\beta }}\right)\)

\(s_9 = \left( t\sqrt{H_\textrm{T}\alpha _1}-\frac{1}{2}\sqrt{\frac{\alpha _1}{H_\textrm{T}}}\right)\)

\(s_{10} = \left( t\sqrt{K_\textrm{c}\alpha _0}-\frac{1}{2}\sqrt{\frac{\alpha _0}{K_\textrm{c}}}\right)\)

\(r_0 = \left( 1-\textrm{erfc}(\sqrt{\bar{a} t})\right)\)

\(r_1 = \left( 1-\textrm{erfc}(\sqrt{({\bar{a}}+a)t})\right)\)

\(r_2 = (1-\textrm{erfc}(\sqrt{H_\textrm{T}t}))\)

\(r_3 = (1-\textrm{erfc}(\sqrt{K_\textrm{c}t}))\)

\(r_4 = (1-\textrm{erfc}(\sqrt{(H_\textrm{T}+\alpha _2)t}))\)

\(r_5 = (1-\textrm{erfc}(\sqrt{(K_\textrm{c}+\alpha _4)t}))\)

\(r_6 = (1-\textrm{erfc}(\sqrt{({\bar{a}}+\alpha _2)t}))\)

\(r_7 = (1-\textrm{erfc}(\sqrt{({\bar{a}}+\alpha _4)t}))\)

\(t_0 = \frac{1}{\sqrt{\pi t}}e^{-({\bar{a}}+a)t}\)

\(t_1 = \frac{1}{\sqrt{\pi t}}\left[ e^{-(H_\textrm{T}+\alpha _2)t}-e^{-({\bar{a}}+\alpha _2)t}\right]\)

\(t_2 = \frac{1}{\sqrt{\pi t}}\left[ e^{-(K_\textrm{c}+\alpha _4)t}-e^{-({\bar{a}}+\alpha _4)t}\right]\)

\(t_3 = \frac{1}{\sqrt{\pi t}}\left[ {\frac{e^{-{\bar{a}}t}}{\sqrt{\beta }}}-\sqrt{\alpha _1}e^{-H_\textrm{T}t}\right]\)

\(t_4 = \frac{1}{\sqrt{\pi t}}\left[ {\frac{e^{-{\bar{a}}t}}{\sqrt{\beta }}}-\sqrt{\alpha _0}e^{-K_\textrm{c}t}\right]\)

\(t_5 = \sqrt{\frac{t}{\pi }}\left[ {\frac{e^{-{\bar{a}}t}}{\sqrt{\beta }}}-\sqrt{\alpha _1}e^{-H_\textrm{T}t}\right]\)

\(t_6 = \sqrt{\frac{t}{\pi }}\left[ {\frac{e^{-{\bar{a}}t}}{\sqrt{\beta }}}-\sqrt{\alpha _0}e^{-K_\textrm{c}t}\right]\)

\(e_0 = e^{at}\)

\(e_1 = e^{\alpha _2 t}\)

\(e_2 = e^{\alpha _4 t}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghalya, T., Tamizharasi, R. Effect of heat source/sink and thermal radiation on an unsteady MHD Casson flow past over an exponentially accelerated vertical plate. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-12950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-12950-x

Keywords

Mathematics Subject Classification

Navigation