Skip to main content
Log in

Thermostructural analysis on airfoil fin printed circuit heat exchanger using supercritical CO2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The printed circuit heat exchanger (PCHE) has gained significant attention in concentrated solar and nuclear power plant applications due to its small size, high surface area to volume ratio, and ability to function effectively in high-pressure and high-temperature conditions. Ensuring the thermostructural performance of the PCHE remains at a high level is crucial for its safe and effective operation under critical operating environments. At present, PCHE materials primarily consist of alloys because of their outstanding thermal conductivity and great performance. Nevertheless, the durability of these heat exchangers may be restricted based on the specific environmental conditions they encounter, as metals are prone to corrosion. This research presents a numerical model in ANSYS Workbench 17.2 that couples fluid, thermal, and mechanical aspects in a three-dimensional analysis. The model is used to study the behaviour of an Airfoil Fin PCHE made of different composite materials. This study utilised a NACA0021 Airfoil Fin with a staggered pitch design. The numerical results indicated that the Carbon fiber reinforced polymer-GY-70 epoxy and E-Glass fiber reinforced polymer composites have lower equivalent thermal stress and strain compared to conventional alloys under the same operational conditions. So, these materials own an advantage for the supercritical CO2 Brayton cycle application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Xiangyang X, et al. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle. Appl Therm Eng. 2014;70:867–75.

    Article  Google Scholar 

  2. Seungjoon B, Seong GK, Jekyoung L, Jeong IL. Study on CO2—water printed circuit heat exchanger performance operating under various CO2 phases for SCO2 power cycle application. Appl Therm Eng. 2015;113:1536–46.

    Google Scholar 

  3. Du X, et al. Heat transfer of supercritical CO2 in vertical round tube: a considerate turbulent Prandtl number modification. Energy. 2020;192: 116612.

    Article  CAS  Google Scholar 

  4. Cameron N, Erfan R, Vinod N, Christian H. Design and performance of a microchannel supercritical carbon dioxide recuperator with integrated header architecture. J Enhanc Heat Transf. 2019;26(4):365–92.

    Article  Google Scholar 

  5. Wen XC, Katrine B, Jie C, Yi TC, Qiu WW. Thermo-hydraulic performance of printed circuit heat exchanger with different cambered airfoil fins. Heat Transf Eng. 2019;41(8):708–22.

    Google Scholar 

  6. Matteo M, Lei C, Giuseppe B, Savvas AT. Numerical modelling and performance maps of printed circuit heat exchanger for supercritical CO2 Brayton cycle. Energy Procedia. 2019;161:472–9.

    Article  Google Scholar 

  7. Katrine B, Yi C. Thermal-hydraulic correlations for zigzag-channel PCHEs covering abroad range of design parameters for estimating performance prior to modelling. Therm Sci Eng Prog. 2020;17: 100383.

    Article  Google Scholar 

  8. Xiao LL, Tang GH, Yuan HF, Dan LY, Si QW. Numerical analysis on slotted airfoil fins for printed circuit heat exchanger in S-CO2 Brayton cycle. ASME J Nucl Radiat Sci. 2019;5(4): 041303.

    Article  Google Scholar 

  9. Matteo M, Lei C, Giuseppe B, Savvas AT. Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems. Appl Therm Eng. 2019;161: 114190.

    Article  Google Scholar 

  10. Yuandong Z, Minjun P, Genglei X, Tenglong C. Numerical investigation on local heat transfer characteristics of SCO2 in horizontal semi-circular microtube. Appl Therm Eng. 2019;154:380–92.

    Article  Google Scholar 

  11. Wen QW, Yu Q, Ya LH, Shi H-Y. Experimental study on the heat transfer performance of a molten-salt printed circuit heat exchanger with airfoil fins for concentrating solar power. Int J Heat Mass Transf. 2019;135:837–46.

    Article  Google Scholar 

  12. Sandeep RP, Mark HA, Devesh R. Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO2 power cycles. Exp Therm Fluid Sci. 2019;106:119–29.

    Article  Google Scholar 

  13. Zhe XW, Yi GL, Qing L. Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers. Sci China Technol Sci. 2020;63:655–67.

    Article  Google Scholar 

  14. Wenxiao C, Xionghui L, Yitung C, Qiuwang W, Ting M. Experimental study on small scale printed circuit heat exchanger with zigzag channels. Heat Transf Eng. 2020;42(9):723–35.

    Google Scholar 

  15. Zhongchao Z, et al. Experimental and numerical investigation of thermal-hydraulic performance of supercritical nitrogen in airfoil fin printed circuit heat exchanger. Appl Therm Eng. 2020;168: 114829.

    Article  Google Scholar 

  16. Katrine B, Yi-tung C. One-way coupled three-dimensional fluid-structure interaction analysis of zigzag-channel supercritical CO2 printed circuit heat exchanger. Nucl Eng Des. 2020;358: 110434.

    Article  Google Scholar 

  17. Zhang H, et al. Experimental and numerical investigations of thermal-hydraulic characteristics in a novel airfoil fin heat exchanger. Int J Heat Mass Transf. 2021;175: 121333.

    Article  Google Scholar 

  18. Lian J, et al. Thermal and mechanical performance of a hybrid printed circuit heat exchanger used for supercritical carbon dioxide Brayton cycle. Energy Convers Manag. 2021;245: 114573.

    Article  CAS  Google Scholar 

  19. Linghong T, Zhen C, Jie P. Investigation on the thermal-hydraulic performance in a PCHE with airfoil fins for supercritical LNG near the pseudo-critical temperature under the rolling condition. Appl Therm Eng. 2020;175: 115404.

    Article  Google Scholar 

  20. Alon K, Shaun RA, Mark HA, Devesh R. Experimental investigation of pressure drop and heat transfer in high temperature supercritical CO2 and helium in a printed-circuit heat exchanger. Int J Heat Mass Transf. 2021;171: 121089.

    Article  Google Scholar 

  21. Tao J, Mingjia L, Wenqi W, Dong L, Zhanbin L. Fluid-thermal-mechanical coupled analysis and optimized design of printed circuit heat exchanger with airfoil fins of S-CO2 Brayton cycle. J Therm Sci. 2022;31(6):2264–80.

    Article  Google Scholar 

  22. Wei W, et al. Parametric study on thermo-hydraulic performance of NACA airfoil fin PCHEs channels. Energies. 2022;15(14):5095.

    Article  Google Scholar 

  23. Witiwat J, Teerapat W, Rinrada SP, Yanin S. The effect of flow channel geometry on thermomechanical performance of printed circuit heat exchanger (PCHE). ASME J Nucl Radiat Sci. 2023;9(2): 021401.

    Article  Google Scholar 

  24. Xu XY, Wang QW, Li L, Ekkad SV, Ma T. Thermal hydraulic performance of different discontinuous fins used in a printed circuit heat exchanger for supercritical CO2. Numer Heat Transf Part A Appl. 2015;68(10):1067–86.

    Article  CAS  Google Scholar 

  25. Ming JL, Han HZ, Jia QG, Kun W, Wen QT. The development technology, and applications of supercritical CO2 power cycle in nuclear energy solar energy, and other energy industries. Appl Therm Eng. 2017;126:255–75.

    Article  Google Scholar 

  26. Afzal A, et al. Experimental investigation on the thermal performance of inserted helical tube three-fluid heat exchanger using graphene/water nanofluid. J Therm Anal Calorim. 2022;147:5087–100.

    Article  CAS  Google Scholar 

  27. Saboor S, Srijita N, Venkata RM, Aritra G, Afzal A. Polymer dispersed liquid crystal retrofitted smart switchable glazing: energy saving, diurnal illumination, and CO2 mitigation prospective. J Clean Prod. 2022;350: 131444.

    Article  Google Scholar 

  28. Afzal A, Muhammad AM. Thermo-mechanical and structural performances of automobile disc brakes: a review of numerical and experimental studies. J Arch Comput Methods Eng. 2019;26:1489–513.

    Article  Google Scholar 

Download references

Funding

There is no any external and internal funding sources are available for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arul Prakash Raji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raji, A.P., Ranganathan, S., Stanislaus Arputharaj, B. et al. Thermostructural analysis on airfoil fin printed circuit heat exchanger using supercritical CO2. J Therm Anal Calorim 149, 4153–4177 (2024). https://doi.org/10.1007/s10973-024-12925-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12925-y

Keywords

Navigation