Skip to main content
Log in

Impact of thermal radiative Carreau ternary hybrid nanofluid dynamics in solar aircraft with entropy generation: significance of energy in solar aircraft

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main source of thermal energy is the sun, and with the increase in solar technology, it is now being utilized in many devices such as sun-based panels, photovoltaic cells, batteries and lights, solar fabric, solar water pumping, etc. Nowadays, improvement in flight effectiveness of solar aircraft by utilizing solar energy and nanotechnology is being studied by many scientists. This article is also based on studying the effectiveness of solar aircraft based on solar energy and nanotechnology. For this purpose, few properties of heat transfer among symmetrical wings will be analysed such as porous surface, thermal radiation, convective condition and heat source/sink. It is considered that the ternary hybrid nanofluid moves through the internal side of parabolic trough solar collector. The current study examines the radiative flow of a Carreau tri-hybrid nanoliquid across a convectively heated stretching surface in porous media. Also entropy generation on Carreau fluid is analysed in this work. Energy equation is modelled through heat source/sink and thermal radiation. The well-established numeric technique BVP4c has been used to solve the system of differential equations in the form of concentration, energy and momentum. Several flow variables on fluid velocity, temperature, drag friction, the Nusselt, entropy generation and Bejan number are described in figures and tables. The main outcomes of the current investigation are that the velocity and temperature lowered with augmenting values of Weissenberg number \({\text{We}}\). Results will prove that THNF is larger in the case of HNF and NF. Further, the drag friction and thermal efficiency of Thnf (\({\text{MoS}}_{2} + {\text{SiO}}_{2} + {\text{Fe}}_{3} {\text{O}}_{4} {\text{/EG}}\)), Hnf (\({\text{MoS}}_{2} + {\text{SiO}}_{2} {\text{/EG}}\)) and Nf (\({\text{MoS}}_{2} {\text{/EG}}\)) are computed in percentage with numerous values. The second finding is the addition of entropy due to the increasing magnitude of radiative flow, Carreau fluid variable. When comparing the current results to the reported results, we get a close match.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

THNF:

Ternary hybrid nanofluid

HNF:

Hybrid nanofluid

Nanofluid:

Nanofluid

PTSC:

Parabolic trough solar collector

SAF:

Solar aircraft

\({\text{We}}\) :

Weissenberg parameter

\(n\) :

Power index number

\(S\) :

Suction/injection

\(K\) :

Porous medium material

\({\text{Pr}}\) :

Prandtl number

\({\text{Rd}}\) :

Radiation parameter

\(\delta\) :

Heat source/sink parameter

\(f^{\prime }\) :

Dimensionless velocity

\(\theta\) :

Dimensionless temperature

\({\text{Bi}}\) :

Biot number

\({\text{Re}}_{{\text{x}}}\) :

Local Reynolds number

\(C_{{{\text{fx}}}}\) :

Skin friction coefficient

\({\text{Nu}}_{{\text{x}}}\) :

Nusselt number

\(a\) :

Constant

\(x,y\) :

Cartesian coordinate, \({\text{m}}\)

\(c_{{\text{p}}}\) :

Specific heat, \({\text{J}}\;{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1}\)

\(g\) :

Acceleration due to gravity, \({\text{m}}\;{\text{s}}^{ - 2}\)

\(\mu_{{\text{f}}}\) :

Dynamic viscosity of EG, \({\text{kg}}\;{\text{ms}}^{ - 1}\)

\(v_{{\text{f}}}\) :

Kinematic viscosity of EG, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(\alpha_{{\text{f}}}\) :

Thermal diffusivity of EG, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(k\) :

Thermal conductivity of EG, \({\text{kg}}\,{\text{m}}\;{\text{Ks}}^{ - 3}\)

\(\rho_{{\text{f}}}\) :

Density of EG, \({\text{kg}}\;{\text{ms}}^{ - 3}\)

\(T_{{\text{w}}}\) :

Wall temperature, \({\text{K}}\)

\(T_{\infty }\) :

Ambient temperature, \({\text{K}}\)

\(q_{{\text{r}}}\) :

Radiative heat flux, \({\text{W}}\;{\text{m}}^{ - 2}\)

\(U_{{\text{w}}}\) :

Stretching velocity, \({\text{m}}\;{\text{s}}^{ - 1}\)

\(\mu_{{{\text{Thnf}}}}\) :

Dynamic viscosity of EG, \({\text{kg}}\;{\text{ms}}^{ - 1}\)

\(\nu_{{{\text{Thnf}}}}\) :

Kinematic viscosity of EG, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(\alpha_{{{\text{Thnf}}}}\) :

Thermal diffusivity of EG, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(k_{{{\text{Thnf}}}}\) :

Thermal conductivity of EG, \({\text{kg}}\,{\text{m}}\;{\text{Ks}}^{ - 3}\)

\(\rho_{{{\text{Thnf}}}}\) :

Density of EG, \({\text{kg}}\;{\text{m}}^{ - 3}\)

\((c_{\rm p} )_{{{\text{Thnf}}}}\) :

Specific heat, \({\text{J}}\;{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1}\)

\(\mu_{{{\text{hnf}}}}\) :

Dynamic viscosity of EG, \({\text{kg}}\;{\text{ms}}^{ - 1}\)

\(v_{{{\text{hnf}}}}\) :

Kinematic viscosity of EG, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(\alpha_{{{\text{hnf}}}}\) :

Thermal diffusivity of EG, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(k_{{{\text{hnf}}}}\) :

Thermal conductivity of EG, \({\text{kg}}\,{\text{m}}\;{\text{Ks}}^{ - 3}\)

\(\rho_{{{\text{hnf}}}}\) :

Density of EG, \({\text{kg}}\;{\text{m}}^{ - 3}\)

\((c_{{\text{p}}} )_{{{\text{hnf}}}}\) :

Specific heat, \({\text{J}}\;{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1}\)

\(\mu_{{{\text{nf}}}}\) :

Dynamic viscosity of EG, \({\text{kg}}\;{\text{ms}}^{ - 1}\)

\(v_{{{\text{nf}}}}\) :

Kinematic viscosity of EG, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(\alpha_{{{\text{nf}}}}\) :

Thermal diffusivity of EG, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(k_{{{\text{nf}}}}\) :

Thermal conductivity of EG, \({\text{kg}}\,{\text{m}}\;{\text{Ks}}^{ - 3}\)

\(\rho_{{{\text{nf}}}}\) :

Density of EG, \({\text{kg}}\;{\text{m}}^{ - 3}\)

\((c_{{\text{p}}} )_{{{\text{nf}}}}\) :

Specific heat, \({\text{J}}\;{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1}\)

\(1,{\text{MoS}}_{2}\) :

Molybdenum disulphide

\(2,{\text{SiO}}_{2}\) :

Silicon dioxide

\(3,{\text{Fe}}_{{3}} {\text{O}}_{{4}}\) :

Iron oxide

References

  1. Hassanien RHE, Li M, Lin WD. Advanced applications of solar energy in agricultural greenhouses. Renew Sustain Energy Rev. 2016;54:989–1001.

    Article  Google Scholar 

  2. Dickinson EW. Solar energy technology handbook. Boca Raton: CRC Press; 2018.

    Book  Google Scholar 

  3. Xiong Q, Hajjar A, Alshuraiaan B, Izadi M, Altnji S, Shehzad SA. State-of-the-art review of nanofluids in solar collectors: a review based on the type of the dispersed nanoparticles. J Clean Prod. 2021;310:127528.

    Article  CAS  Google Scholar 

  4. Jamshed W, Nisar KS, Ibrahim RW, Shahzad F, Eid MR. Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application. J Mater Res Technol. 2021;14:985–1006.

    Article  CAS  Google Scholar 

  5. Jamshed W. Thermal augmentation in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar energy application. Energy Environ. 2021;33(6):1090–133.

    Article  Google Scholar 

  6. Wang S, Ma D, Yang M, Zhang L, Li G. Flight strategy optimization for high-altitude long-endurance solar-powered aircraft based on Gauss pseudo-spectral method. Chin J Aeronaut. 2019;32(10):2286–98.

    Article  Google Scholar 

  7. Gao XZ, Hou ZX, Guo Z, Liu JX, Chen XQ. Energy management strategy for solar-powered high-altitude longendurance aircraft. Energy Convers Manag. 2013;70:20–30.

    Article  Google Scholar 

  8. Barbosa R, Escobar B, Sanchez VM, Hernandez J, Acosta R, Verde Y. Sizing of a solar/hydrogen system for high altitude long endurance aircrafts. Int J Hydrog Energ. 2014;39:16637–45.

    Article  CAS  Google Scholar 

  9. Rajagopal KR, Na TY, Gupta AS. Flow of viscoelastic fluid over a stretching sheet. Rheo Acta. 1984;1984(23):213–5.

    Article  Google Scholar 

  10. Hayat T, Abbas Z, Pop I. Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid. Int J Heat Mass Transf. 2008;51:3200–6.

    Article  CAS  Google Scholar 

  11. Ishak A, Nazar R, Pop I. Heat transfer over a stretching surface with variable surface heat flux in micropolar fluids. Phys Lett. 2008;372:559–61.

    Article  CAS  Google Scholar 

  12. Prasad KV, Datti PS, Vajravelu K. Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a vertical stretching sheet. Int J Heat Mass Transf. 2010;53:879–88.

    Article  Google Scholar 

  13. Makinde D, Aziz A. Mixed convection from a convectively heated vertical plate to a fluid with internal heat generation. J Heat Transf. 2011;133:122501.

    Article  Google Scholar 

  14. Vajravelu K, Prasad KV, Sujath A. Convection heat transfer in a Maxwell fluid at a non-isothermal surface. Cent Eur J Phys. 2011;9:807–15.

    CAS  Google Scholar 

  15. Khan I, Shah NA, Dennis L. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate. Sci Rep. 2017;7:40147.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ganesh N, Vishnu KPK, Al-Mdallal QM, Hakeem AK, Ganga B. Non-linear thermal radiative marangoni boundary layer flow of gamma Al2O3 nanofluid past streching sheet. J nanofluid. 2018;7:944–50.

    Article  Google Scholar 

  17. Hakeem AK, Saranya S, Ganga B. Comparative study on newtonian/non-newtonian base fluids with magnetic/non-magnetic nanoparticles over a flat plate with uniform heat flux”. J Mol Liq. 2017;230:445–52.

    Article  Google Scholar 

  18. Carreau PJ. Rheological equations from molecular network theories, Trans Soc. Rheol. 1972;16:99–127.

    ADS  CAS  Google Scholar 

  19. Carreau PJ. An analysis of the viscous behavior of polymer solutions. Can J Chem Eng. 1979;57:135–40.

    Article  CAS  Google Scholar 

  20. Kefayati GHR, Tang H. MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM. Int J Heat Mass Transf. 2018;126:508–30.

    Article  Google Scholar 

  21. Olajuwon BI. Convective heat and mass transfer in a hydromagnetic Carreau fluid past a vertical porous plated in presence of thermal radiation and thermal diffusion. Therm Sci. 2011;15:241–52.

    Article  Google Scholar 

  22. Manjunatha S, Puneeth V, Gireesha BJ, Chamkha A. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. J Appl Comput Mech. 2021;8(4):1279–86.

    Google Scholar 

  23. Nazir U, Sohail M, Hafeez MB, Krawczuk M. Significant production of thermal energy in partially ionized hyperbolic tangent material based on ternary hybrid nanomaterials. Energies. 2021;14:6911.

    Article  CAS  Google Scholar 

  24. Chen Z, Yan H, Lyu Q, Niu S, Tang C. Ternary hybrid nanoparticles of reduced graphene oxide/graphene-like MoS2/zirconia as lubricant additives for bismaleimide composites with improved mechanical and tribological properties. Compos Part A Appl Sci Manuf. 2017;101:98–107.

    Article  CAS  Google Scholar 

  25. Zayan M, Rasheed AK, John A, Muniandi S, Faris A. Synthesis and characterization of novel ternary hybrid nanoparticles as thermal additives in H2O. Chem Rxiv. 2021;1:173.

    Google Scholar 

  26. Shafiq A, Mebarek-Oudina F, Sindhu TN, Abidi A. A study of dual stratification on stagnation point Walters’ B nanofluid flow via radiative riga plate: a statistical approach. Eur Phys J Plus. 2021;136:1–24.

    Article  Google Scholar 

  27. Swain K, Mebarek-Oudina F, Abo-Dahab SM. Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J Therm Anal Calorim. 2021;147:1561–70.

    Article  Google Scholar 

  28. Mebarek-Oudina F, Fares R, Aissa A, Lewis RW, Abu-Hamdeh NH. Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int Commun Heat Mass Transf. 2021;125:105279.

    Article  CAS  Google Scholar 

  29. Warke AS, Ramesh K, Mebarek-Oudina F, Abidi A. Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet. J Therm Anal Calorim. 2021;147:6901–12.

    Article  Google Scholar 

  30. Dadheech PK, Agrawal P, Mebarek-Oudina F, Abu-Hamdeh NH, Sharma A. Comparative heat transfer analysis of MoS2/C2H6O2 and SiO2-MoS2/C2H6O2 nanofluids with natural convection and inclined magnetic field. J Nanofluids. 2020;9:161–7.

    Article  Google Scholar 

  31. Mebarek-Oudina F. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transf Asian Res. 2019;48:135–47.

    Article  Google Scholar 

  32. Dhif K, Mebarek-Oudina F, Chouf S, Vaidya H, Chamkha AJ. Thermal analysis of the solar collector cum storage system using a hybrid-nanofluids. J Nanofluids. 2021;10:616–26.

    Article  Google Scholar 

  33. Fuzhang W, Muhammad S, Umar N, Essam RE, Choonkil P, Noman J. An implication of magnetic dipole in Carreau Yasuda liquid influenced by engine oil using ternary hybrid nanomaterial. Nanotechnology Rev. 2022;11:1620–32.

    Article  Google Scholar 

  34. Wang X, Huaiwu Z, Jie L, Lichuan J, Cheng L, Yulong L, Kui L. Influence of Bi2O3-Nb2O5 additive on microstructure and magnetic properties of LiZn ferrites. J Magn Magnetic Mat. 2022;564:170165.

    Article  CAS  Google Scholar 

  35. Acharya N. On the hydrothermal behavior and entropy analysis of buoyancy driven magnetohydrodynamic hybrid nanofluid flow within an octagonal enclosure fitted with fins: application to thermal energy storage. J En Stor. 2022;53:105198.

    Google Scholar 

  36. Acharya N, Mabood F, Badruddin IA. Thermal performance of unsteady mixed convective Ag/MgO nanohybrid flow near the stagnation point domain of a spinning sphere. Int Comm Heat Mass Trans. 2022;134:106019.

    Article  CAS  Google Scholar 

  37. Acharya N. Buoyancy driven magnetohydrodynamic hybrid nanofluid flow within a circular enclosure fitted with fins. Int Comm Heat Mass Trans. 2022;133:105980.

    Article  CAS  Google Scholar 

  38. Acharya N. On the flow patterns and thermal control of radiative natural convective hybrid nanofluid flow inside a square enclosure having various shaped multiple heated obstacles. The Eur Phys J Plus. 2021;136:889.

    Article  CAS  Google Scholar 

  39. Acharya N, Fazle M. On the hydrothermal features of radiative Fe3O4–graphene hybrid nanofluid flow over a slippery bended surface with heat source/sink. J of Ther Ana Calor. 2021;143:1273–89.

    Article  CAS  Google Scholar 

  40. Hakeem AKA, Ragupathi P, Saranya S, Ganga B. Three dimensional non-linear radiative nanofluid flow over a riga plate. J Appl Comput Mech. 2020;6(4):1012–29.

    Google Scholar 

  41. Ganga B, Ansari SM, Ganesh NV, Hakeem AA. MHD flow of boungiorno model nanofluid over a vertical plate with internal heat generation/absorption. Propuls Power Res. 2016;5:211–22.

    Article  Google Scholar 

  42. Ganga B, Mohamed YA, Vishnu GN, Hakeem AKA. MHD flow of boungiorno model nanofluid over a vertical plate with internal heat generation/absorption. Propuls Power Res. 2016;5:211–22.

    Article  Google Scholar 

  43. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press; 1996.

    Google Scholar 

  44. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1996;79:1191–218.

    Article  ADS  CAS  Google Scholar 

  45. Oztop HF, Al-Salem K. A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew Sustain Energy Rev. 2012;16:911–20.

    Article  CAS  Google Scholar 

  46. Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM. Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Adv Powder Technol. 2015;26:542–52.

    Article  Google Scholar 

  47. Rashidi MM, Abelman S, Mehr NF. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf. 2013;62:515–25.

    Article  CAS  Google Scholar 

  48. Qing J, Bhatti MM, Abbas MA, Rashidi MM, Ali MES. Entropy generation on MHD casson nanofluid flow over a porous stretching/shrinking surface. Entropy. 2016;18(4):123.

    Article  ADS  Google Scholar 

  49. Olanrewaju AM, Salawu SO, Olanrewaju PO, Amoo SA. Unsteady radiative magnetohydromagnetic flow and entropy generation of maxwell nanofluid in a porous medium with arrhenius chemical kinetic. Cogent Eng. 2021;8(1):1942639.

    Article  Google Scholar 

  50. Arikodlu A, Ozkol I, Komurgoz G. Effects of slip on entropy generation in a single rotating disk in MHD flow. Appl Energ. 2008;85:1225–36.

    Article  ADS  Google Scholar 

  51. Das S, Chakraborty S, Jana RN, Makinde OD. Entropy analysis of nanofluid flow over a convectively heated radially stretching disk embedded in a porous medium. J Nanofluids. 2016;5:48–58.

    Article  Google Scholar 

  52. Abdul Hakeem AK, Govindaraju M, Ganga B. Influence of inclined lorentz forces on entropy generation analysis for viscoelastic fluid over a stretching sheet with nonlinear thermal radiation and heat source/sink. J Heat Mass Trans Res. 2019;6:1–10.

    Google Scholar 

  53. Gadamsetty R, Animasaun IL, Sajja VS, Macherla JB, Naresh B, Raju CSK. Significance of adding titanium dioxide nanoparticles to an existing distilled water conveying aluminum oxide and zinc oxide nanoparticles: scrutinization of chemical reactive ternary-hybrid nanofluid due to bioconvection on a convectively heated surface. Nonlinear Eng. 2022;11:241–51.

    Article  Google Scholar 

  54. Ramzan M, Muhammad J, Sadique R, Dawood A, Anwar S, Poom K. Computational assessment of microrotation and buoyancy effects on the stagnation point flow of carreau-yasuda hybrid nanofluid with chemical reaction past a convectively heated riga plate. ACS Omeg. 2022;7:30297–312. https://doi.org/10.1021/acsomega.2c03570.

    Article  CAS  Google Scholar 

  55. Jyothi K, Sudarsana R, Suryanarayana PR. Carreau nanofluid heat and mass transfer flow through wedge with slip conditions and nonlinear thermal radiation. J Braz Soc Mech Sci Eng. 2019;41:415.

    Article  Google Scholar 

  56. Yaseen M, Manoj K, Sawan KR. Assisting and opposing flow of a MHD hybrid nanofluid flow past a permeable moving surface with heat source/sink and thermal radiation. Partial Diff Eq App Math. 2021. https://doi.org/10.1016/j.padiff.2021.100168.

    Article  Google Scholar 

  57. Algehyne EA, Altaweel NH, Anwar S, Abdullah D, Muhammad R, Kumam P. A semi-analytical passive strategy to examine the water-ethylene glycol (50:50)-based hybrid nanofluid flow over a spinning disk with homogeneous-heterogeneous reactions. Scient Rep. 2022;12:17105. https://doi.org/10.1038/s41598-022-21080-z.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Researchers Supporting Project number (RSP2023R411), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehad Ali Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F., Zaib, A., Reddy, S. et al. Impact of thermal radiative Carreau ternary hybrid nanofluid dynamics in solar aircraft with entropy generation: significance of energy in solar aircraft. J Therm Anal Calorim 149, 1495–1513 (2024). https://doi.org/10.1007/s10973-023-12734-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12734-9

Keywords

Navigation