Skip to main content
Log in

Nanofluid-based cooling of prismatic lithium-ion battery packs: an integrated numerical and statistical approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recently, the need for thermal management of lithium-ion batteries in electrical transportation engineering has received increased attention. To get maximum performance from lithium-ion batteries, battery thermal management systems are required. This paper quantitatively presents the effects of several factors on both maximum battery temperature and temperature gradient. These factors include ambient temperature (288 K, 293 K, 298 K, 303 K, 308 K), C-rate (1C, 2C, 3C, 4C, 5C), mixing ratio (1%, 2%, 3%, 4%, 5%), and inlet velocity (0.01 m s−1, 0.02 m s−1, 0.03 m s−1, 0.04 m s−1, 0.05 m s−1). Five levels for each parameter were considered to develop the orthogonal array. The significance of the variables was orderly shown through the L25 experiment. Results indicated that for maximal battery temperature, C-rate and ambient temperature are the most significant factors while for temperature gradient, C-rate and inlet velocity play an important role. For maximum battery temperature ambient temperature, C-rate, mixing ratio, and inlet velocity of 288 K, 1C, 4%, and 0.05 m s−1, respectively, were obtained at the optimal setting. An ambient temperature of 308 K, a C-rate of 1, a mixing ratio of 5%, and an inlet velocity of 0.05 m s−1 was the optimal setting for the temperature gradient. The results showed that the confirmatory test validates the optimization process for maximum battery temperature and temperature gradient. This study may provide a pathway for manufacturers and researchers interested in minimizing battery temperature and improving temperature gradient in electric vehicle applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

\(C_{{\text{p}}}\) :

Specific heat (J kg−1 K−1)

dp:

Diameter (nm)

DoD:

Depth of discharge

H2O:

Water

j ECh :

Volumetrically current transfer ratio

j short :

Current transfer ratio

k :

Thermic conductivity (W mK1)

K bz :

The Boltzmann constant (J K1)

n :

Size of electrons

ρ :

Density (kg m3)

Pr:

Prandtl number

Re:

Reynolds number

SOC:

State of charge

SOE:

State of energy

t :

Time (s)

T :

Temperature (K)

T max :

Max of temperature (K)

u :

Velocity (m s1)

\(V\) :

Operational voltage (V)

V inlet :

The air inlet speed (m s1)

bf:

Base fluid

nf:

Nanofluid

p:

Nanoparticle

+:

Positive electrodes

−:

Negative electrodes

µ :

Viscosity (kg ms1)

σ :

Effective electric conductivities

\(\emptyset\) :

The volume fraction of nanoparticles

φ :

Phase potentials

NTGK:

Newman, Tiedemann, Gu and Kim

PCM:

Phase change materials

3D:

Three-dimensional

References

  1. Mohammed AG, Wang Q, Elfeky KE. Rapid cooling effectiveness of li-ion battery module with multiple phase change materials for plug-in hybrid electric vehicle. Int J Therm Sci. 2023;185: 108040.

    Article  Google Scholar 

  2. Lv Y, Huang S, Lu S, Jia T, Liu Y, Ding W, Yu X, Kang F, Zhang J, Cao Y. Engineering of cobalt-free Ni-rich cathode material by dual-element modification to enable 4.5 V-class high-energy-density lithium-ion batteries. Chem Eng J. 2023;455:140652.

    Article  CAS  Google Scholar 

  3. Liu S, Xiong L, He C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. J Power Sources. 2014;261:285–91.

    Article  CAS  Google Scholar 

  4. Zhang Y, Chen P, Wang T, Su D, Wang C. Development of small-scale monitoring and modeling strategies for safe lithium-ion batteries. Batter Supercaps. 2022;5(2):202100292.

    Article  Google Scholar 

  5. Rashidi S, Ijadi A, Dadashi Z. Potentials of porous materials for temperature control of lithium-ion batteries. J Energy Storage. 2022;51: 104457.

    Article  Google Scholar 

  6. Sarvar-Ardeh S, Rashidi S, Rafee R, Karimi N. A review on the applications of micro-/mini-channels for battery thermal management. J Therm Anal Calorim. 2023;1–21.

  7. Yang TF, Lin PY, Teng LT, Rashidi S, Yan WM. Numerical and experimental study on thermal management of NCM-21700 Li-ion battery. J Power Sources. 2022;548: 232068.

    Article  CAS  Google Scholar 

  8. Wang C, Xu J, Wang M, Xi H. Experimental investigation on reciprocating air-cooling strategy of battery thermal management system. J Energy Storage. 2023;58: 106406.

    Article  Google Scholar 

  9. Yang R, Wang M, Xi H. Thermal investigation and forced air-cooling strategy of battery thermal management system considering temperature non-uniformity of battery pack. Appl Therm Eng. 2023;219: 119566.

    Article  Google Scholar 

  10. Hasan HA, Togun H, Abed AM, Biswas N, Mohammed HI. Thermal performance assessment for an array of cylindrical lithium-ion battery cells using an air-cooling system. Appl Energy. 2023;346: 121354.

    Article  CAS  Google Scholar 

  11. Hasan HA, Togun H, Abed AM, Mohammed HI, Biswas N. A novel air-cooled li-ion battery (lib) array thermal management system–a numerical analysis. Int J Therm Sci. 2023;190: 108327.

    Article  Google Scholar 

  12. Esmaeili Z, Khoshvaght-Aliabadi M. Thermal management and temperature uniformity enhancement of cylindrical lithium-ion battery pack based on liquid cooling equipped with twisted tapes. J Taiwan Inst Chem Eng. 2023;104671.

  13. Fan Z, Fu Y, Liang H, Gao R, Liu S. A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time. Energy. 2023;265: 126331.

    Article  Google Scholar 

  14. Sarvar-Ardeh S, Rafee R, Rashidi S. Enhancing the performance of liquid-based battery thermal management system by porous substrate minichannel. J Energy Storage. 2023;71: 108142.

    Article  Google Scholar 

  15. Zadehkabir A, Mousavi S, Siavashi M. Phase change materials for battery thermal management. In: Phase change materials for heat transfer. Elsevier. 2023;267–300.

  16. Chen G, Shi Y, Ye H, Kang H. Experimental study on phase change material based thermal management design with adjustable fins for lithium-ion battery. Appl Therm Eng. 2023;221: 119808.

    Article  CAS  Google Scholar 

  17. Angani A, Kim HW, Hwang MH, Kim E, Kim KM, Cha HR. A comparison between Zig-Zag plated hybrid parallel pipe and liquid cooling battery thermal management systems for lithium-ion battery module. Appl Therm Eng. 2023;219: 119599.

    Article  CAS  Google Scholar 

  18. Salimi A, Khoshvaght-Aliabadi M, Rashidi S. On thermal management of pouch type lithium-ion batteries by novel designs of wavy minichannel cold plates: comparison of co-flow with counter-flow. J Energy Storage. 2022;52: 104819.

    Article  Google Scholar 

  19. Talele V, Patil MS, Panchal S, Fraser R, Fowler M, Gunti SR. Novel metallic separator coupled composite phase change material passive thermal design for large format prismatic battery pack. J Energy Storage. 2023;58: 106336.

    Article  Google Scholar 

  20. Talele V, Zhao P. Effect of nano-enhanced phase change material on the thermal management of a 18650 NMC battery pack. J Energy Storage. 2023;64: 107068.

    Article  Google Scholar 

  21. Ma Y, Yang H, Zuo H, Ma Y, Zuo Q, Chen Y, He X, Wei R. Three-dimensional EG@ MOF matrix composite phase change materials for high efficiency battery cooling. Energy. 2023;278:127798.

    Article  CAS  Google Scholar 

  22. Can A, Selimefendigil F, Öztop HF. A review on soft computing and nanofluid applications for battery thermal management. J Energy Storage. 2022;53: 105214.

    Article  Google Scholar 

  23. Öztop HF, Sakhrieh A, Abu-Nada E, Al-Salem K. Mixed convection of mhd flow in nanofluid filled and partially heated wavy walled lid-driven enclosure. Int Commun Heat Mass Transf. 2017;86:42–51.

    Article  Google Scholar 

  24. Kolsi L, Alrashed AA, Al-Salem K, Oztop HF, Borjini MN. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int J Heat Mass Transf. 2017;111:1007–18.

    Article  CAS  Google Scholar 

  25. Liao G, Wang W, Zhang F, Jiaqiang E, Chen J, Leng E. Thermal performance of lithium-ion battery thermal management system based on nanofluid. Appl Therm Eng. 2022;216: 118997.

    Article  CAS  Google Scholar 

  26. Wiriyasart S, Hommalee C, Sirikasemsuk S, Prurapark R, Naphon P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Stud Therm Eng. 2020;18: 100583.

    Article  Google Scholar 

  27. Chen M, Li J. Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. J Energy Storage. 2020;32: 101715.

    Article  Google Scholar 

  28. Dilbaz F, Selimefendigil F, Öztop HF. Lithium-ion battery module performance improvements by using nanodiamond-Fe3O4 water/ethylene glycol hybrid nanofluid and fins. J Therm Anal Calorim. 2022;147(19):10625–35.

    Article  CAS  Google Scholar 

  29. Mitra A, Kumar R, Singh DK. Thermal management of lithium-ion batteries using carbon-based nanofluid flowing through different flow channel configurations. J Power Sources. 2023;555: 232351.

    Article  CAS  Google Scholar 

  30. Ouyang T, Liu B, Wang C, Ye J, Liu S. Novel hybrid thermal management system for preventing li-ion battery thermal runaway using nanofluids cooling. Int J Heat Mass Transf. 2023;201: 123652.

    Article  CAS  Google Scholar 

  31. Hasan HA, Togun H, Abed AM, Qasem NA, Abderrahmane A, Guedri K, Eldin SM. Numerical investigation on cooling cylindrical lithium-ion-battery by using different types of nanofluids in an innovative cooling system. Case Stud Therm Eng. 2023;103097.

  32. Abbas F, Ali HM, Shah TR, Babar H, Janjua MM, Sajjad U, Amer M. Nanofluid: potential evaluation in automotive radiator. J Mol Liq. 2020;297: 112014.

    Article  CAS  Google Scholar 

  33. Kwon KH, Shin CB, Kang TH, Kim CS. A two-dimensional modeling of a lithium-polymer battery. J Power Sources. 2006;163(1):151–7.

    Article  CAS  Google Scholar 

  34. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 1996.

    Google Scholar 

  35. Yetik O, Karakoc TH. A study on lithium-ion battery thermal management system with Al2O3 nanofluids. Int J Energy Res. 2022;46(8):10930–41.

    Article  CAS  Google Scholar 

  36. Yetik Ö, Mahir N. Flow structure around two tandem square cylinders close to a free surface. Ocean Eng. 2020;214: 107740.

    Article  Google Scholar 

  37. Yetik O. Thermal and electrical effects of basbars on li-ion batteries. Int J Energy Res. 2020;44(11):8480–91.

    Article  CAS  Google Scholar 

  38. Yetik O, Karakoc TH. Estimation of thermal effect of different busbars materials on prismatic li-ion batteries based on artificial neural networks. J Energy Storage. 2021;38: 102543.

    Article  Google Scholar 

  39. White F. Fluid mechanics. 5th ed. New York: McGraw Hill Book Company; 2003. p. 52–78.

    Google Scholar 

  40. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  41. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    Article  CAS  Google Scholar 

  42. Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag. 2016;126:622–31.

    Article  CAS  Google Scholar 

  43. Rao Z, Huo Y, Liu X, Zhang G. Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam. J Energy Inst. 2015;88(3):241–6.

    Article  CAS  Google Scholar 

  44. Xu M, Zhang Z, Wang X, Jia L, Yang L. A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process. Energy. 2015;80:303–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OY, UM contributed to conceptualization, methodology, software, data curation, writing—original draft, visualization, investigation, validation, supervision, writing—review and editing. THK contributed to validation, supervision, writing—review and editing.

Corresponding author

Correspondence to Ugur Morali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morali, U., Yetik, O. & Karakoc, T.H. Nanofluid-based cooling of prismatic lithium-ion battery packs: an integrated numerical and statistical approach. J Therm Anal Calorim 149, 799–811 (2024). https://doi.org/10.1007/s10973-023-12726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12726-9

Keywords

Navigation