Skip to main content
Log in

Poly(lactic acid)/poly(ethylene glycol) green nanocomposites assisted by sorbitol-derivative nanofibrillar scaffolds with improved crystallization rates and mechanical properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Environmentally friendly poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) polymer blends have been used for commercial applications, primarily for food packaging applications. However, the mechanical strength of PLA decreases with the addition of PEG. In this study, a natural sugar derivative, 1,3:2,4-dibenzylidene-D-sorbitol (DBS), was added to PLA/PEG blends. DBS is a well-known and inexpensive gelator of organic solvents. The results showed that DBS, when added to PLA/PEG, self-organized into nanofibrils with diameters of 30–50 nm. The DBS nanofillers acted as both reinforcements and nucleating agents in PLA/PEG. The reinforcement improved the mechanical strength of the nanocomposites, and the nucleation agent (together with PEG acting as a plasticizer) synergistically improved the overall crystallization rate of PLA. For instance, the crystallization rate of a PLA/PEG nanocomposites (mass ratio of 30/70) with 3 mass% DBS was nine times higher than that of pristine PLA. Because PLA, PEG, and DBS are eco-friendly materials, they can be promising candidates for biomedical and packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu G, Xie P, Yang H, Dang K, Xu Y, Sain M, Turng L-S, Yang W. A review of thermoplastic polymer foams for functional applications. J Mater Sci. 2021;156:1579–11604. https://doi.org/10.1007/s10853-021-06034-6.

    Article  CAS  Google Scholar 

  2. Liu S, Qin S, He M, Zhou D, Qin Q, Wang H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos B Eng. 2020;199:108238. https://doi.org/10.1016/j.compositesb.2020.108238.

    Article  CAS  Google Scholar 

  3. Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN. Environmental impact of food packaging materials: a review of contemporary development from conventional plastics to polylactic acid based materials. Materials. 2020;13(21):4994. https://doi.org/10.3390/ma13214994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101(22):8493–501. https://doi.org/10.1016/j.biortech.2010.05.092.

    Article  CAS  Google Scholar 

  5. Ageyeva T, Kovács JG, Tábi T. Comparison of the efficiency of the most effective heterogeneous nucleating agents for poly(lactic acid). J Therm Anal Calorim. 2022;147:8199–211.

    Article  CAS  Google Scholar 

  6. Kakroodi AR, Kazemi Y, Ding W, Ameli A, Park CB. Poly(lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability. Biomacromolecules. 2015;16(12):3925–35. https://doi.org/10.1021/acs.biomac.5b01253.

    Article  CAS  PubMed  Google Scholar 

  7. Shen T, Xu Y, Cai X, Ma P, Dong W, Chen M. Enhanced crystallization kinetics of poly(lactide) with oxalamide compounds as nucleators: effect of spacer length between the oxalamide moieties. RSC Adv. 2016;6(54):48365–74. https://doi.org/10.1039/C6RA04050K.

    Article  CAS  Google Scholar 

  8. Paul MA, Alexandre M, Degée P, Henrist C, Rulmont A, Dubois P. New nanocomposites materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer. 2003;44(2):443–50. https://doi.org/10.1016/S0032-3861(02)00778-4.

    Article  CAS  Google Scholar 

  9. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E. Thermal and mechanical properties of plasticized poly (L-lactic acid). J Appl Polym Sci. 2003;90(7):1731–8. https://doi.org/10.1002/app.12549.

    Article  CAS  Google Scholar 

  10. Lai W-C, Liu L-J. Enhanced crystallization of poly(lactic acid) bioplastics by a green and facile approach using liquid poly(ethylene glycol). Polym Adv Technol. 2022;33(12):4131–41. https://doi.org/10.1002/pat.5844.

    Article  CAS  Google Scholar 

  11. Chieng BW, Ibrahim NA, Wan Yunus WMZ, Zobir HM. Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): mechanical, thermal, and morphology properties. J Appl Polym Sci. 2013;130:4576–80. https://doi.org/10.1002/app.39742.

    Article  CAS  Google Scholar 

  12. Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S. Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv. 2020;10(22):13316–68. https://doi.org/10.1039/d0ra01801e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Cao L, Yuan D, Chen Y. Design of super-tough co-continuous PLA/NR/SiO2 TPVs with balanced stiffness-toughness based on reinforced rubber and interfacial compatibilization. Compos Sci Technol. 2018;165(9):231–9. https://doi.org/10.1016/j.compscitech.2018.07.005.

    Article  CAS  Google Scholar 

  14. Nagarajan V, Mohanty AK, Misra M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng. 2016;4(6):2899–916. https://doi.org/10.1021/acssuschemeng.6b00321.

    Article  CAS  Google Scholar 

  15. Lee J-S, Hwang G-H, Kwon YS, Jeong YG. Highly tough and thermally stable polylactide blends compatibilized with glycidyl methacrylate-grafted polypropylene. Macromol Mater Eng. 2021;306(8):2100122. https://doi.org/10.1002/mame.202100122.

    Article  CAS  Google Scholar 

  16. Cornwell DJ, Daubney OJ, Smith DK. Photopatterned multidomain gels: multi-component self-assembled hydrogels based on partially self-sorting 1,3:2,4-dibenzylidene-d-sorbitol derivatives. J Am Chem Soc. 2015;137(49):15486–92. https://doi.org/10.1021/jacs.5b09691.

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-Olles J, Slavik P, Whitelaw NK, Smith DK. Self-assembled gels formed in deep eutectic solvents: supramolecular eutectogels with high ionic conductivity. Angew Chem Int Ed Engl. 2019;58(13):4173–8. https://doi.org/10.1002/anie.201810600.

    Article  CAS  PubMed  Google Scholar 

  18. Steck K, Stubenrauch C. Gelling lyotropic liquid crystals with the organogelator 1,3:2,4-dibenzylidene-d-sorbitol part I: phase studies and sol–gel transitions. Langmuir. 2019;35(52):17132–41. https://doi.org/10.1021/acs.langmuir.9b01688.

    Article  CAS  PubMed  Google Scholar 

  19. Leven F, Ulbricht M, Limberg J, Ostermann R. Novel finely structured polymer aerogels using organogelators as a structure-directing component. J Mater Chem A. 2021;9(36):20695–702. https://doi.org/10.1039/D1TA06161E.

    Article  CAS  Google Scholar 

  20. Dizon GC, Atkinson G, Argent SP, Santu LT, Amabilino DB. Sustainable sorbitol-derived compounds for gelation of the full range of ethanol–water mixtures. Soft Matter. 2020;16(19):4640–54. https://doi.org/10.1039/d0sm00343c.

    Article  CAS  PubMed  Google Scholar 

  21. Lai W-C, Cheng L-T. Preparation and characterization of novel poly(vinylidene fluoride) membranes using self-assembled dibenzylidene sorbitol for membrane distillation. Desalination. 2014;332(1):7–17. https://doi.org/10.1016/j.desal.2013.10.020.

    Article  CAS  Google Scholar 

  22. Lai W-C, Lai P-H. Synthesis and characterization of polystyrene with DBS networks. Macromol Chem Phys. 2010;211(6):685–91. https://doi.org/10.1002/macp.200900459.

    Article  CAS  Google Scholar 

  23. Liu X, Liu X, Li Y, Zhang Y, Xie X, Li K, Chen Z, Zhang L, Tang Z, Liu Z. Nanoengineering of transparent polypropylene containing sorbitol-based clarifier. J Polym Res. 2020;27(8):198. https://doi.org/10.1007/s10965-020-02169-3.

    Article  CAS  Google Scholar 

  24. Nogales A, Mitchell GR, Vaughan AS. Anisotropic crystallization in polypropylene induced by deformation of a nucleating agent network. Macromolecules. 2003;36(13):4898–906. https://doi.org/10.1021/ma0343028.

    Article  CAS  Google Scholar 

  25. Liu S, Zhao B, He D. Crystallization and microporous membrane properties of ultrahigh molecular weight polyethylene with dibenzylidene sorbitol. J Appl Polym Sci. 2014;131(17):40706. https://doi.org/10.1002/app.40706.

    Article  CAS  Google Scholar 

  26. You J, Yu W, Zhou C. Accelerated crystallization of poly(lactic acid): synergistic effect of poly(ethylene glycol), dibenzylidene sorbitol, and long-chain branching. Ind Eng Chem Res. 2014;53(3):1097–107. https://doi.org/10.1021/ie402358h.

    Article  CAS  Google Scholar 

  27. Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 2021;128:42–59. https://doi.org/10.1016/j.actbio.2021.04.009.

    Article  CAS  PubMed  Google Scholar 

  28. Matsuura S, Shibata M, Han J, Fujii K. Polymer gel electrolyte prepared by “salting-in” poly(ethylene glycol) into a phosphonium-based ionic liquid with a lithium salt. ACS Appl Polym Mater. 2020;2(3):1276–82. https://doi.org/10.1021/acsapm.9b01168.

    Article  CAS  Google Scholar 

  29. Deng Y, Yang L. Preparation and characterization of polyethylene glycol (PEG) hydrogel as shape-stabilized phase change material. Appl Therm Eng. 2017;114:1014–7. https://doi.org/10.1016/j.applthermaleng.2016.11.207.

    Article  CAS  Google Scholar 

  30. Sundar N, Stanley SJ, Kumar SA, Keerthana P, Kumar GA. Development of dual purpose, industrially important PLA–PEG based coated abrasives and packaging materials. J Appl Polym Sci. 2021;138(21):50495. https://doi.org/10.1002/app.50495.

    Article  CAS  Google Scholar 

  31. Huang X, Ge X, Zhou L, Wang Y. Eugenol embedded zein and poly(lactic acid) film as active food packaging: formation, characterization, and antimicrobial effects. Food Chem. 2022;384:132482. https://doi.org/10.1016/j.foodchem.2022.132482.

    Article  CAS  PubMed  Google Scholar 

  32. Saini P, Arora M, Kumar MNVR. Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev. 2016;107:47–59. https://doi.org/10.1016/j.addr.2016.06.014.

    Article  CAS  PubMed  Google Scholar 

  33. Safandowska M, Rozanski A. Ring-banded spherulites in polylactide and its blends. Polym Test. 2021;100:107230. https://doi.org/10.1016/j.polymertesting.2021.107230.

    Article  CAS  Google Scholar 

  34. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(212):212–24. https://doi.org/10.1063/1.1750631.

    Article  CAS  Google Scholar 

  35. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9(2):177–84. https://doi.org/10.1063/1.1750872.

    Article  CAS  Google Scholar 

  36. Fahrländer M, Fuchs K, Friedrich C. Rheological properties of dibenzylidene sorbitol networks in poly(propylene oxide) matrices. J Rheol. 2000;44(5):1103–19. https://doi.org/10.1122/1.1289275.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

LJL contributed to methodology, experimental investigation, data curation and formal analysis. WCL contributed to conceptualization, resources, write, review and editing.

Corresponding author

Correspondence to Wei-Chi Lai.

Ethics declarations

Conflict of interest

The authors report that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, WC., Liu, LJ. Poly(lactic acid)/poly(ethylene glycol) green nanocomposites assisted by sorbitol-derivative nanofibrillar scaffolds with improved crystallization rates and mechanical properties. J Therm Anal Calorim 148, 13337–13348 (2023). https://doi.org/10.1007/s10973-023-12636-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12636-w

Keywords

Navigation