Skip to main content
Log in

2E’s (energy and exergy) analysis of a multi-stage variable leg-shaped TEG with CNT and graphene-based MXene ternary hybrid nanofluids as new coolant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current theoretical study analyzes a performance comparison of a two-stage variable leg-shaped thermoelectric generator (TEG) with the combination of dissimilar p-type and n-type materials. For the cold side of the TEG configuration, water, MXene/Water, MXene/CNT, MXene/Graphene, and MXene/CNT/Graphene ternary hybrid nanofluid as new coolants have been considered. The objective of the present study is to ascertain the effect of flow parameters on hot and cold side fluids and to investigate the performance parameters of the TEG. The first stage of TEG is of a regular shape, while the later stage tapers to give a high-temperature gradient. Effect on voltage, power, conversion efficiency, second law efficiency, irreversibility, and normalized voltage with the coolant and exhaust flow rates have been investigated. The results revealed an optimum result of higher power output, second law efficiency, conversion efficiency, current, and voltage with a coolant flow rate of 0.007 kg s−1. Compared to water, MXene/Water nanofluid has 3.5% and 3.27% higher power output and second law efficiency, respectively, followed by MXene/CNT, MXene/Graphene, and MXene/CNT/Graphene ternary hybrid nanofluids. MXene/water nanofluid has 6.42% higher power output than water; MXene/CNT, MXene/Graphene, and MXene/CNT/Graphene ternary hybrid nanofluids have 4.28%, 4.23%, and 15.68% lower power output, respectively. The power output and second law efficiency of MXene/Water nanofluid are 3.5% and 6.84% greater than water. MXene/CNT, MXene/Graphene, and MXene/CNT/Graphene ternary hybrid nanofluids had 8.21%, 9.58%, and 10.95% poorer second law efficiency: with CNT and graphene-based MXene hybrid nanofluids, the improved TEG outperforms traditional units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

Q :

Heat transfer rate

Z :

Row number

α pn :

Effective Seebeck coefficient

I :

Current

T :

Temperature

k pn :

Effective thermal conductivity

R pn :

Effective resistance

l :

Length of leg

b :

Width of leg

h :

Height of leg

β :

Thermal conductance

ρ :

Electrical resistivity

h :

Heat transfer coefficient

Nu:

Nusselt number

f :

Friction factor

Pr:

Prandtl number

\(\dot{m}\) :

Mass flow rate

V :

Voltage

P :

Power

η :

Efficiency

ZT :

Figure of merit

Irr:

Irreversibility

S gen :

Entropy generation

ex:

Exhaust

co:

Coolant

A :

Area

conv:

Conversion

bf:

Basefluid

hnf:

Hybrid nanofluid

EFR:

Exhaust flow rate

CFR:

Coolant flow rate

TEG:

Thermoelectric generator

MVT:

Multi-stage variable TEG

k :

Thermal conductivity

C p :

Specific heat

µ :

Viscosity

\(\rho \) :

Density

\(\varphi \) :

Vol. fraction

References

  1. Kumar A, Singh K, Verma S, Das R. Inverse prediction and optimization analysis of a solar pond powering a thermoelectric generator. Sol Energy. 2018;15(169):658–72.

    Google Scholar 

  2. Goswami R, Das R. Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons. Renew Energy. 2020;1(148):1280–91.

    Google Scholar 

  3. Goswami R, Das R. Experimental analysis of a novel solar pond driven thermoelectric energy system. J Energy Res Technol. 2020;142(12):121302.

    Google Scholar 

  4. Goldsmid HJ. Improving the thermoelectric figure of merit. Sci Technol Adv Mater. 2021;22:280–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng K, Qin J, Jiang Y, Zhang S, Bao W. Performance comparison of single- and multi-stage onboard thermoelectric generators and stage number optimization at a large temperature difference. Appl Therm Eng. 2018;141:456–66.

    Google Scholar 

  6. Sun X, Liang X, Shu G, Tian H, Wei H, Wang X. Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine. Energy. 2014;77:489–98.

    CAS  Google Scholar 

  7. Maduabuchi C, Alobaid M. Geometry and stage number optimization of a concentrating solar multi-stage segmented thermoelectric generator by exploiting different optimization schemes. Int J Energy Res. 2022;46(15):22926–45.

    CAS  Google Scholar 

  8. Yin T, Li WT, Li K, He ZZ. Multi-parameter optimization and uncertainty analysis of multi-stage thermoelectric generator with temperature-dependent materials. Energy Rep. 2021;7:7212–23.

    Google Scholar 

  9. Gou JJ, Hu JX, Yan ZW, Gao G, Gong CL. Effects of physical dimensions, temperature ranges and interfacial thermal contacts on the multi-stage thermoelectric generators for a hypersonic vehicle. Int J Energy Res. 2022;46:20021–38.

    Google Scholar 

  10. Wang Z, Han F, Ji Y, Li W. Redundant energy combination and recovery scheme for dual fuel carriers based on thermoelectric harvesting with a large temperature range. Int J Energy Res. 2021;45:7404–20.

    Google Scholar 

  11. Zhao Z, Zuo Z, Wang W, Liu R, Kuang N. Performance optimization for a combustion-based micro thermoelectric generator with two-stage thermoelectric module. Appl Therm Eng. 2021;198:117464.

    Google Scholar 

  12. Ma L, Zhao Q, Zhang H. Performance analysis of a new hybrid system composed of a concentrated photovoltaic cell and a two-stage thermoelectric generator. Sustain Energy Grids Netw. 2021;27:100481.

    Google Scholar 

  13. Karana DR, Sahoo RR. Influence of geometric parameter on the performance of a new asymmetrical and segmented thermoelectric generator. Energy. 2019;179:90–9.

    CAS  Google Scholar 

  14. Sahoo RR, Karana DR. Effect of design shape factor on exergonic performance of a new modified extended-tapering segmented thermoelectric generator system. Energy. 2020;200:117561.

    Google Scholar 

  15. Ramos-Castañeda CF, Olivares-Robles MA, Méndez-Méndez JV. Analysis of the performance of a solar thermoelectric generator for variable leg geometry with nanofluid cooling. Processes. 2021;9:9081352.

    Google Scholar 

  16. Doraghi Q, Khordehgah N, Żabnieńska-Góra A, Ahmad L, Norman L, Ahmad D, et al. Investigation and computational modelling of variable teg leg geometries. Chem Eng. 2021;5:5030045.

    Google Scholar 

  17. Maduabuchi C, Lamba R, Njoku H, Eke M, Mgbemene C. Effects of leg geometry and multistaging of thermoelectric modules on the performance of a photovoltaic-thermoelectric system using different photovoltaic cells. Int J Energy Res. 2021;45:17888–902.

    Google Scholar 

  18. Maduabuchi CC, Eke MN, Mgbemene CA. Solar power generation using a two-stage X-leg thermoelectric generator with high-temperature materials. Int J Energy Res. 2021;45:13163–81.

    CAS  Google Scholar 

  19. Kumar R, Maduabuchi C, Lamba R, Vashishtha M, Upadhyaya S. Transient optimization of a segmented variable area leg geometry-based solar thermoelectric generator. In: 2021 IEEE green energy and smart systems conference, IGESSC 2021, Institute of Electrical and Electronics Engineers Inc. 2021. p. 9618705.

  20. Wang X, Qi J, Deng W, Li G, Gao X, He L, et al. An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics model. Energy. 2021;233:120810.

    Google Scholar 

  21. Maduabuchi C, Njoku H, Eke M, Mgbemene C, Lamba R, Ibrahim JS. Overall performance optimisation of tapered leg geometry based solar thermoelectric generators under isoflux conditions. J Power Sour. 2021;500:229989.

    CAS  Google Scholar 

  22. Ajeel RK, Sopian K, Zulkifli R. A novel curved-corrugated channel model: thermal-hydraulic performance and design parameters with nanofluid. Int Commun Heat Mass Transfer. 2021;1(120):105037.

    Google Scholar 

  23. Ajeel RK, Sopian K, Zulkifli R. Thermal-hydraulic performance and design parameters in a curved-corrugated channel with L-shaped baffles and nanofluid. J Energy Storage. 2021;1(34):101996.

    Google Scholar 

  24. Ajeel RK, Zulkifli R, Sopian K, Fayyadh SN, Fazlizan A, Ibrahim A. Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method. Powder Technol. 2021;1(385):144–59.

    Google Scholar 

  25. Ajeel RK, Sopian K, Zulkifli R, Fayyadh SN, Hilo AK. Assessment and analysis of binary hybrid nanofluid impact on new configurations for curved-corrugated channel. Adv Powder Technol. 2021;32(10):3869–84.

    CAS  Google Scholar 

  26. Pratap A, Baghel YK, Patel VK. Effect of impingement height on the enhancement of heat transfer with circular confined jet impingement using nanofluids. Mater Today Proc. 2020;1(28):1656–61.

    Google Scholar 

  27. Kumar A, Gupta PR, Tiwari AK, Said Z. Performance evaluation of small scale solar organic Rankine cycle using MWCNT+ R141b nanorefrigerant. Energy Convers Manage. 2022;15(260): 115631.

    Google Scholar 

  28. Kumar K, Sarkar J, Mondal SS. Assessment of newly-designed hybrid nanofluid-cooled micro-channeled thermal management system for Li-ion battery. J Electrochem Energy Convers Storage. 2024;21(1):011011.

    Google Scholar 

  29. Omiddezyani S, Gharehkhani S, Yousefi-Asli V, Khazaee I, Ashjaee M, Nayebi R, Shemirani F, Houshfar E. Experimental investigation on thermo-physical properties and heat transfer characteristics of green synthesized highly stable CoFe2O4/rGO nanofluid. Colloids Surf A Physicochem Eng Asp. 2021;610:125923.

    CAS  Google Scholar 

  30. Murshed SMS, Sharifpur M, Giwa SO, Meyer JP. Experimental research and development on the natural convection of suspensions of nanoparticles—a comprehensive review. Nanomaterials. 2020;10:1855.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamze S, Berrada N, Cabaleiro D, Desforges A, Ghanbaja J, Gleize J, Bégin D, Michaux F, Maré T, Vigolo B. Few-layer graphene-based nanofluids with enhanced thermal conductivity. Nanomaterials. 2020;10:1258.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Khan MZU, Uddin E, Akbar B, Akram N, Naqvi AA, Sajid M, Ali Z, Younis Y, Márquez FPG. Investigation of heat transfer and pressure drop in microchannel heat sink using Al2O3 and ZrO2 nanofluids. Nanomaterials. 2020;10:1796.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Wang Y, Kong M, Alvarado JL. Thermophysical performance of graphene based aqueous nanofluids. Int J Heat Mass Transf. 2018;119:408–17.

    CAS  Google Scholar 

  34. Ajeel RK, Salim WI, Hasnan K. Design characteristics of symmetrical semicircle-corrugated channel on heat transfer enhancement with nanofluid. Int J Mech Sci. 2019;1(151):236–50.

    Google Scholar 

  35. Ajeel RK, Salim WI, Sopian K, Yusoff MZ, Hasnan K, Ibrahim A, Al-Waeli AH. Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: an experimental and numerical study. Int J Heat Mass Transf. 2019;1(145):118806.

    Google Scholar 

  36. Ajeel RK, Salim WI, Hasnan K. Experimental and numerical investigations of convection heat transfer in corrugated channels using alumina nanofluid under a turbulent flow regime. Chem Eng Res Des. 2019;1(148):202–17.

    Google Scholar 

  37. Ajeel RK, Salim WI, Hasnan K. Thermal performance comparison of various corrugated channels using nanofluid: Numerical study. Alex Eng J. 2019;58(1):75–87.

    Google Scholar 

  38. Ajeel RK, Salim WI, Hasnan K. Numerical investigations of heat transfer enhancement in a house shaped-corrugated channel: Combination of nanofluid and geometrical parameters. Therm Sci Eng Progress. 2020;1(17):100376.

    Google Scholar 

  39. Ajeel RK, Saiful-Islam W, Sopian K, Yusoff MZ. Analysis of thermal-hydraulic performance and flow structures of nanofluids across various corrugated channels: an experimental and numerical study. Therm Sci En Progress. 2020;1(19):100604.

    Google Scholar 

  40. Ajeel RK, Salim WI, Hasnan K. Influences of geometrical parameters on the heat transfer characteristics through symmetry trapezoidal-corrugated channel using SiO2-water nanofluid. Int Commun Heat Mass Transf. 2019;1(101):1–9.

    Google Scholar 

  41. Zhang Y, Wang L, Zhang N, Zhou Z. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 2018;8:19895–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A. 2014;2:14334–8.

    CAS  Google Scholar 

  43. Jastrz AM, Szuplewska A, Rozmysłowska-Wojciechowska A, Chudy M, Olszyna A, Birowska M, Popielski M, Majewski JA, Scheibe B, Natu V. On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Mater. 2020;7:025018.

    Google Scholar 

  44. Nasrallah GK, Al-Asmakh M, Rasool K, Mahmoud KA. Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environ Sci Nano. 2018;5:1002–11.

    CAS  Google Scholar 

  45. Samylingam L, Aslfattahi N, Saidur R, Mohd S, Afzal A. Solar energy materials and solar cells thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid. Sol Energy Mater Sol Cells. 2020;218:110754.

    CAS  Google Scholar 

  46. Bao Z, Bing N, Zhu X, Xie H, Yu W. Ti3C2Tx MXene contained nanofluids with high thermal conductivity, super colloidal stability and low viscosity. Chem Eng J. 2020;406:126390.

    Google Scholar 

  47. Rubbi F, Habib K, Saidur R, Aslfattahi N, Mohd S, Das L. Performance optimization of a hybrid PV/T solar system using soybean oil/MXene nanofluids as a new class of heat transfer fluids. Sol Energy. 2020;208:124–38.

    CAS  Google Scholar 

  48. Bejan A, Lorente S, Kang DH. Constructal design of thermoelectric power packages. Int J Heat Mass Transf. 2014;79:291–9.

    Google Scholar 

  49. Srivastava K, Sahoo RR. Effects of performance and normalized parameters on various materials based multi-stage thermoelectric generator. J Therm Sci Eng Appl. 2023;15:111006.

    CAS  Google Scholar 

  50. Kumar V, Sahoo RR. E’s (energy, exergy, economic, environmental) performance analysis of air heat exchanger equipped with various twisted turbulator inserts utilizing ternary hybrid nanofluids. Alex Eng J. 2022;61(7):5033–50.

    Google Scholar 

  51. Karana DR, Sahoo RR. Performance effect on the TEG system for waste heat recovery in automobiles using ZnO and SiO2 nanofluid coolants. Heat Transf Asian Res. 2019;48(1):216–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Rekha Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, K., Sahoo, R.R. 2E’s (energy and exergy) analysis of a multi-stage variable leg-shaped TEG with CNT and graphene-based MXene ternary hybrid nanofluids as new coolant. J Therm Anal Calorim 148, 14305–14318 (2023). https://doi.org/10.1007/s10973-023-12614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12614-2

Keywords

Navigation