Skip to main content
Log in

Hydrothermal performance through multiple shapes of microchannels (MCHS) using nanofluids: an exhaustive review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrothermal performance through multiple shapes of microchannels (MCHS) using nanofluids is summarized as the previous studies in the present work. The enhancement of heat transfer dissipation in electronic equipment becomes more necessary where high heat can damage it and cause more problems, so the Microchannel heat sinks can be a solution fore these problems. The heat transfer enhancement through Microchannels can be acheived by a passive technique which includes using corrugated channels such as wavy, zigzag, and converge-diverge MCHS. Also, flow disruptions such as using MCHS with cavities, ribs, grooves, dimples, and offset strip pin fins. In otherside the fluid additives included using nanofluid with different MCHS shapes, and Secondary flow as an MCHS with oblique fins is another method fore passive techniques. Wavy microchannels with secondary channels have higher hydrothermal performance compared to other types. Zigzag MCHS could provide good heat transfer enhancement but with high pressure drops. Regarding flow disruptions, the hydrothermal performance of MCHS with ribs is better than pin fin. The results showed that using a hybrid nanofluid gives more enhancement heat transfer as well as higher pressure drops. Concerning single-phase fluid, the review results showed that using metal oxide nanofluid has higher thermal conductivity compared to carbon-based and dielectric nanofluids; therefore, the single phase of nanofluids can be arranged descending from the best to worst, according to its use as the cooling liquid in microchannels and their efficiency in heat transfer enhancement, metals (Ag, Cu), metal oxides (TiO2–H2O, CuO–H2O, ZnO–H2O, and Al2O3–H2O), and dielectric nanofluid (SiO2–H2O). The specific application requirements and design considerations will guide the selection of the appropriate microchannel type for optimal heat transfer performance, so MCHS with mixing flow, higher thermal conductivity nanofluids, and low pressure drop are the most important factors that achieve hydrothermal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

HC:

Height of MCHS

C p :

Specific heat

K :

Thermal conductivity

T :

Temperature

KB:

Boltzmann constant

u p :

Brownian velocity of the nanoparticles

Nu:

Nusselt number

Re:

Reynold number

W t :

Width of the tapered channel

W :

Mass

W C :

Width of channel

AR:

Aspect ratio

CNT:

Carbon nanotube

CCHS:

Crosscutting zigzag flow channel

CCZH:

Single crosscutting zigzag flow channel

DC:

Divergent–convergent microchannel

EG:

Ethylene glycol

GnP:

Graphene nanoplatelets

DLMCHS:

Double-layer microchannel heat sink

Hs:

Substrate thickness

HTP:

Heat transfer performance

RMCH:

Rectangular microchannel heat sink

RSC:

Rectangle with semicircular

SLMCHS:

Single-layer microchannel heat sink

TLMCHS:

Triangular layer microchannel heat sink

TWC_L:

Transversal wavy channel left

TWC_R:

Transversal wavy

Tri.C–C.R:

Triangle cavity with circular rib

MCH:

Microchannel heat sink

MHSIJD:

Microchannel heat sinks with impinging jets

W/EG:

Water/ethylene glycol

MWCNT:

Multi-wall carbon nanotube

MC-AWTR:

All wall trefoil ribs

MC-SWTR:

Side wall trefoil ribs

MC-BWTR:

Bottom wall trefoil ribs

PVD:

Physical vapor deposition

PF:

Pin fin

ZSMHS:

Zigzag serpentine microchannel heat sink

WMCH:

Wavy microchannel heat sink

WMSC:

Wavy microchannel with the secondary channel

VG:

Vortex generator

b:

Bottom wall

bf:

Base fluid

c:

Channel

nf:

Nanofluid

np:

Nanoparticle

t:

Top wall

s:

Substrate

w:

Wall

ρ :

Density (kg m3)

µ :

Dynamic viscosity [kg (m s)1)]

References

  1. Hetsroni G, Mosyak A, Segal Z, Ziskind G. A review of jet impingement cooling in microelectronics. Int J Heat Mass Transf. 2003;46:4595–610.

    Google Scholar 

  2. Ayub ZH, Mujtaba M, Zhang X, Han Z. Numerical and experimental investigation of microchannel heat sink for high concentration photovoltaic cells. Int J Hydrogen Energy. 2013;38:3279–88.

    Google Scholar 

  3. Kashani A, Mahjoob S. Compact heat exchangers: a review and future applications for a new generation of high-temperature solar receivers. Renew Sustain Energy Rev. 2012;16:3069–78.

    Google Scholar 

  4. Joshi Y, Kamath V. Performance analysis of microchannel heat exchanger for cooling of electric vehicle battery. Appl Therm Eng. 2017;112:737–49.

    Google Scholar 

  5. Leary M, Richardson RA, Mileham AR. A review of the development and performance of microchannel heat sinks for electronics cooling. Appl Therm Eng. 2006;26:1977–87.

    Google Scholar 

  6. Dixit T, Ghosh I. Review of micro-and mini-channel heat sinks and heat exchangers for single-phase fluids. Renew Sustain Energy Rev. 2015;41:1298–311.

    Google Scholar 

  7. Shi X, Li S, Mu Y, Yin B. Geometry parameters optimization for a microchannel heat sink with secondary flow channel. Int Commun Heat Mass Transf. 2019;104:89–100.

    Google Scholar 

  8. Ghani A, Sidik NAC, Mamat R, Najafi G, Ken TL, Asako Y, Japar WMAA. Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels. Int J Heat Mass Transf. 2017;114:640–55.

    Google Scholar 

  9. Zargartalebi M, Azaiez J. Heat transfer analysis of nanofluid based microchannel heat sink. Int J Heat Mass Transf. 2018;127(Part B):1233–42.

    CAS  Google Scholar 

  10. Mohammed HA, Gunnasegaran P, Shuaib NH. Heat transfer in rectangular microchannels heat sink using nanofluids. Int Commun Heat Mass Transf. 2010;37(10):1496–503.

    CAS  Google Scholar 

  11. Ma DD, Xia GD, Li YF, Jia YT, Wang J. Effects of structural parameters on fluid flow and heat transfer characteristics in a microchannel with offset zigzag grooves in the sidewall. Int J Heat Mass Transf. 2016;101:427–35.

    CAS  Google Scholar 

  12. Sui Y, Teo CJ, Lee PS, Chew YT, Shu C. Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf. 2010;53(13–14):2760–72.

    CAS  Google Scholar 

  13. Li P, Zhang D, Xie Y, Xie G. Flow structure and heat transfer of non-Newtonian fluids in microchannel heat sinks with dimples and protrusions. Appl Therm Eng. 2016;94:50–8.

    Google Scholar 

  14. Li M, Chen X, Ruan X. Investigation of flow structure and heat transfer enhancement in rectangular channels with dimples and protrusions using large eddy simulation. Int J Therm Sci. 2020;149:106207. https://doi.org/10.1016/j.ijthermalsci.2019.106207.

    Article  Google Scholar 

  15. Chai L, Xia G, Zhou M, Li J, Qi J. Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers. Appl Therm Eng. 2013;51:880–9.

    Google Scholar 

  16. Chen Y, Fu P, Zhang C, et al. Numerical simulation of laminar heat transfer in microchannels with rough surfaces characterized by fractal Cantor structures. Int J Heat Fluid Flow. 2010;31:622–9.

    Google Scholar 

  17. Wang G, Qian N, Ding G. Heat transfer enhancement in microchannel heat sink with bidirectional rib. Int J Heat Mass Transf. 2019;136:597–609.

    Google Scholar 

  18. Wang R, Wang J, Lijin B, et al. Parameterization investigation on the microchannel heat sink with slant rectangular ribs by numerical simulation. Appl Therm Eng. 2018;133:428–38.

    Google Scholar 

  19. Chai L, Wang L, Bai X. Thermohydraulic performance of microchannel heat sinks with triangular ribs on sidewalls—part 1: local fluid flow and heat transfer characteristics. Int J Heat Mass Transf. 2018;127:1124–37. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.114.

    Article  CAS  Google Scholar 

  20. Chai L, Wang L, Bai X. Thermohydraulic performance of microchannel heat sinks with triangular ribs on sidewalls—part 2: average fluid flow and heat transfer characteristics. Int J Heat Mass Transf. 2019;128:634–48.

    Google Scholar 

  21. Ma DD, Xia GD, Wang W, et al. Study on thermal performance of microchannel heat sinks with periodic jetting and throttling structures in sidewalls. Appl Therm Eng. 2019;158: 113764. https://doi.org/10.1016/j.applthermaleng.2019.113764.

    Article  Google Scholar 

  22. Chai L, Xia GD, Wang HS. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls—part 1: heat transfer. Int J Heat Mass Transf. 2016;97:1069–80.

    CAS  Google Scholar 

  23. Chai L, Xia GD, Wang HS. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls—part 2: pressure drop. Int J Heat Mass Transf. 2016;97:1081–90.

    CAS  Google Scholar 

  24. Chai L, Xia GD, Wang HS. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls—part 3: performance evaluation. Int J Heat Mass Transf. 2016;97:1091–101.

    CAS  Google Scholar 

  25. Xia G, Ma D, Zhai Y, et al. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure. Energy Convers Manag. 2015;105:848–57.

    CAS  Google Scholar 

  26. Xia G, Chai L, Zhou M, et al. Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities. Int J Therm Sci. 2011;50:411–9.

    CAS  Google Scholar 

  27. Xia G, Chai L, Wang H, et al. Optimum thermal design of microchannel heat sink with triangular reentrant cavities. Appl Therm Eng. 2011;31:1208–19.

    Google Scholar 

  28. Chai L, Xia G, Zhou M, et al. Numerical simulation of fluid flow and heat transfer in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall. Int Commun Heat Mass Transf. 2011;38:577–84.

    Google Scholar 

  29. Ahmed HE, Ahmed MI. Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks. Int Commun Heat Mass Transf. 2015;66:47–57.

    CAS  Google Scholar 

  30. Chai L, Xia G, Wang L, et al. Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections. Int J Heat Mass Transf. 2013;62:741–51.

    Google Scholar 

  31. Kumar P. Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure. Int J Therm Sci. 2019;136:33–43. https://doi.org/10.1016/j.ijthermalsci.2018.10.006.

    Article  Google Scholar 

  32. Bayrak E, Olcay AB, Serincan MF. Numerical investigation of the effects of geometric structure of microchannel heat sink on flow characteristics and heat transfer performance. Int J Therm Sci. 2019;135:589–600. https://doi.org/10.1016/j.ijthermalsci.2018.08.030.

    Article  CAS  Google Scholar 

  33. Xia G, Zhai Y, Cui Z. Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs. Appl Therm Eng. 2013;58:52–60.

    Google Scholar 

  34. Li YF, Xia GD, Ma DD, et al. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs. Int J Heat Mass Transf. 2016;98:17–28. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.022.

    Article  Google Scholar 

  35. Zhai YL, Xia GD, Liu XF, et al. Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis. Int J Heat Mass Transf. 2014;68:224–33. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.086.

    Article  Google Scholar 

  36. Zhai YL, Xia GD, Liu XF, et al. Exergy analysis and performance evaluation of flow and heat transfer in different micro heat sinks with complex structure. Int J Heat Mass Transf. 2015;84:293–303. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.039.

    Article  Google Scholar 

  37. Ghani IA, Kamaruzaman N, Sidik NAC. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int J Heat Mass Transf. 2017;108:1969–81. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.046.

    Article  Google Scholar 

  38. Go JS. Design of a microfin array heat sink using flow-induced vibration to enhance the heat transfer in the laminar flow regime. Sens Actuators A. 2003;105:201–10.

    CAS  Google Scholar 

  39. Krishnaveni T, Renganathan T, Picardo JR, et al. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field. Phys Rev E. 2017;96:033117.

    Google Scholar 

  40. Selimefendigil F, Ghachem K, Albalawi H, AlShammari BM, Labidi T, Kolsi L. Thermal and phase change process of nanofluid in a wavy PCM installed triangular elastic walled ventilated enclosure under magnetic field. Case Stud Therm Eng. 2023;10:103169.

    Google Scholar 

  41. Wang H, Chen Z, Gao J. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Appl Therm Eng. 2016;107:870–9. https://doi.org/10.1016/j.applthermaleng.2016.07.039.

    Article  Google Scholar 

  42. Li J, Peterson GP. 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow. Int J Heat Mass Transf. 2007;50:2895–904. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.019.

    Article  Google Scholar 

  43. Kou H-S, Lee J-J, Chen C-W. Optimum thermal performance of microchannel heat sink by adjusting channel width and height. Int Commun Heat Mass Transf. 2008;35:577–82. https://doi.org/10.1016/j.icheatmasstransfer.2007.12.002.

    Article  CAS  Google Scholar 

  44. Chein R, Chen J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. Int J Therm Sci. 2009;48:1627–38. https://doi.org/10.1016/j.ijthermalsci.2008.12.019.

    Article  CAS  Google Scholar 

  45. Mansoor MM, Wong K-C, Siddique M. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels. Int Commun Heat Mass Transf. 2012;39:291–7.

    CAS  Google Scholar 

  46. Shkarah AJ, Sulaiman MYB, Ayob MRBH, et al. A 3D numerical study of heat transfer in a single-phase micro-channel heat sink using graphene, aluminum and silicon as substrates. Int Commun Heat Mass Transf. 2013;48:108–15.

    CAS  Google Scholar 

  47. Feng Z, Luo X, Guo F, et al. Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts. Appl Therm Eng. 2017;116:597–609. https://doi.org/10.1016/j.applthermaleng.2017.01.091.

    Article  Google Scholar 

  48. Yildizeli A, Cadirci S. Multi-objective optimization of a micro-channel heat sink through genetic algorithm. Int J Heat Mass Transf. 2020;146:118847.

    Google Scholar 

  49. Xie G, Zhang F, Sundén B, Zhang W. Constructal design and thermal analysis of microchannel heat sinks with multistage bifurcations in single-phase liquid flow. Appl Therm Eng. 2014;62:791–802. https://doi.org/10.1016/j.applthermaleng.2013.10.042.

    Article  Google Scholar 

  50. Leng C, Wang X-D, Wang T-H. An improved design of double-layered microchannel heat sink with truncated top channels. Appl Therm Eng. 2015;79:54–62. https://doi.org/10.1016/j.applthermaleng.2015.01.015.

    Article  Google Scholar 

  51. Shen H, Wang C-C, Xie G. A parametric study on thermal performance of microchannel heat sinks with internally vertical bifurcations in laminar liquid flow. Int J Heat Mass Transf. 2018;117:487–97. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.025.

    Article  Google Scholar 

  52. Ghorbani N, Targhi MZ, Heyhat MM, et al. Investigation of wavy microchannel ability on electronic devices cooling with the case study of choosing the most efficient microchannel pattern. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-09859-6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sui Y, Teo CJ, Lee PS, et al. Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf. 2010;53:2760–72. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.022.

    Article  CAS  Google Scholar 

  54. Sui Y, Lee PS, Teo CJ. An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section. Int J Therm Sci. 2011;50:2473–82. https://doi.org/10.1016/j.ijthermalsci.2011.06.017.

    Article  Google Scholar 

  55. Gong L, Kota K, Tao W, et al. Parametric numerical study of flow and heat transfer in microchannels with wavy walls. J Heat Transf. 2011. https://doi.org/10.1115/1.4003284.

    Article  Google Scholar 

  56. Xie G, Liu J, Zhang W, et al. Analysis of flow and thermal performance of a water-cooled transversal wavy microchannel heat sink for chip cooling. J Electron Packag. 2012. https://doi.org/10.1115/1.4023035.

    Article  Google Scholar 

  57. Yong JQ, Teo CJ. Mixing and heat transfer enhancement in microchannels containing converging-diverging passages. J Heat Transf. 2014. https://doi.org/10.1115/1.4026090.

    Article  Google Scholar 

  58. Gong L, Lu H, Li H, et al. Parametric numerical study of the flow and heat transfer in a dimpled wavy microchannel. Heat Transf Res. 2016;47:105–18. https://doi.org/10.1615/Heattransres.2015010726.

    Article  Google Scholar 

  59. Ghani IA. Heat transfer analysis in multi-configuration microchannel heat sink. [Doctoral Dissertation], University Teknologi Malaysia. 2018.

  60. Kumar S, Sarkar M, Singh PK, et al. Study of thermal and hydraulic performance of air cooled minichannel heatsink with novel geometries. Int Commun Heat Mass Transf. 2019;103:31–42. https://doi.org/10.1016/j.icheatmasstransfer.2019.02.008.

    Article  Google Scholar 

  61. Memon SA, Cheema TA, Kim GM, et al. Hydrothermal investigation of a microchannel heat sink using secondary flows in trapezoidal and parallel orientations. Energies. 2020;13:5616. https://doi.org/10.3390/en13215616.

    Article  CAS  Google Scholar 

  62. Khan MZU, Younis MY, Akram N, et al. Investigation of heat transfer in wavy and dual wavy micro-channel heat sink using alumina nanoparticles. Case Stud Therm Eng. 2021;28:101515. https://doi.org/10.1016/j.csite.2021.101515.

    Article  Google Scholar 

  63. Memon SA, Akhtar S, Cheema TA, et al. Investigation of the hydrothermal phenomena in a wavy microchannel with secondary flow passages through mid-wall inflection points. Appl Therm Eng. 2023;223:120010. https://doi.org/10.1016/j.applthermaleng.2023.120010.

    Article  Google Scholar 

  64. Wang S-L, An D, Yang Y-R, et al. Heat transfer and flow characteristics in symmetric and parallel wavy microchannel heat sinks with porous ribs. Int J Therm Sci. 2023;185:108080. https://doi.org/10.1016/j.ijthermalsci.2022.108080.

    Article  Google Scholar 

  65. Ho CJ, Chang P-C, Yan W-M, et al. Efficacy of divergent minichannels on cooling performance of heat sinks with water-based MEPCM suspensions. Int J Therm Sci. 2018;130:333–46. https://doi.org/10.1016/j.ijthermalsci.2018.04.035.

    Article  CAS  Google Scholar 

  66. Liu H, Li PW, Lew JV. CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels. Int J Hydrogen Energy. 2010;35:9186–98.

    CAS  Google Scholar 

  67. Kumaran RM, Kumaraguruparan G, Sornakumar T. Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels. Appl Therm Eng. 2013;58:205–16.

    Google Scholar 

  68. Ghani IA, Sidik NAC, Kamaruzzaman N, Yahya WJ, Manhian O. The effect of manifold zone parameters on the hydrothermal performance of micro-channel Heat Sink: a review. Int J Heat Mass Transf. 2017;109:1143–61.

    Google Scholar 

  69. Vinodhan VL, Rajan KS. Computational analysis of new microchannel heat sink configurations. Energy Convers Manag. 2014;86:595–604.

    Google Scholar 

  70. Mohammed HA, Gunnasegaran P, Shuaib NH. Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink. Int Commun Heat Mass Transf. 2011;38:474–80. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.031.

    Article  Google Scholar 

  71. Zheng Z, Fletcher DF, Haynes BS. Laminar heat transfer simulations for periodic zigzag semicircular channels: Chaotic advection and geometric effects. Int J Heat Mass Transf. 2013;62:391–401. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.073.

    Article  Google Scholar 

  72. Ma DD, Xia GD, Wang J, Yang YC, Jia YT, Zong LX. An experimental study on the hydrothermal performance of microchannel heat sinks with 4-ports and offset zigzag channels. Energy Convers Manag. 2017;152:157–65.

    CAS  Google Scholar 

  73. Duangthongsuk W, Wongwises S. An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in a microchannel heat sink with multiple zigzag flow channel structures. Exp Therm Fluid Sci. 2017;87:30–9. https://doi.org/10.1016/j.expthermflusci.2017.04.013.

    Article  CAS  Google Scholar 

  74. Tang W, Sun LC, Liu HT, Du M. Improvements in performance of a self-similarity heat sink through structure modification. Heat Transf Eng. 2019. 1–19.

  75. Alnaqi AA, Alsarraf J, Al-Rashed AAAA, Afrand M. Thermal-hydraulic analysis and irreversibility of the MWCNTs-SiO2/EG-H2O non-Newtonian hybrid nanofluids inside a zigzag micro-channels heat sink. Int Commun Heat Mass Transf. 2021;122: 105158. https://doi.org/10.1016/j.icheatmasstransfer.2021.105158.

  76. Peng Y, Li Z, Li S, et al. The experimental study of the heat ransfer performance of a zigzag-serpentine microchannel heat sink. Int J Therm Sci. 2021;163:106831. https://doi.org/10.1016/j.ijthermalsci.2021.106831.

    Article  Google Scholar 

  77. Dewan A, Srivastava P. A review of heat transfer enhancement through flow disruption in a microchannel. J Therm Sci. 2015;24:203–14.

    CAS  Google Scholar 

  78. Chai L, Wang L. Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers. Int J Therm Sci. 2018;127:201–12.

    Google Scholar 

  79. Chai L, Xia GD, Wang HS. Numerical study of laminar flow and heat transfer in a microchannel heat sink with offset ribs on sidewalls. Appl Therm Eng. 2016;92:32–41.

    Google Scholar 

  80. Khan AA, Kim S-M, Kim K-Y. Performance analysis of a microchannel heat sink with various rib configurations. J Thermophys Heat Transf. 2015;30(4):1–9.

    Google Scholar 

  81. Kumar P. Numerical investigation of fluid flow and heat transfer in a trapezoidal microchannel with groove structure. Int J Therm Sci. 2019;136:33–43.

    Google Scholar 

  82. Ahmad F, Cheema TA, Ur Rehman MM, Abbas A, Woo Park C. Thermal enhancement of microchannel heat sink using rib surface refinements. Numer Heat Transf Part A Appl. 2019;7:851–70. https://doi.org/10.1080/10407782.2019.1673104.

    Article  Google Scholar 

  83. Paramanandam K, Srinivasan B. Heat transfer enhancement in microchannels using ribs and secondary flows. Int J Numer Meth Heat Fluid Flow. 2022;32:2299–319.

    Google Scholar 

  84. Zhang S, Ahmad F, Ali H, Ali S, Akhtar K, Ali N, Badran M. Computational study of hydrothermal performance of microchannel heat sink with trefoil shape ribs. IEEE Access. 2022;10:74412–24. https://doi.org/10.1109/ACCESS.2022.3190496.

    Article  Google Scholar 

  85. Lori MS, Vafai K. Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs. Appl Therm Eng. 2022;205:118059.

    Google Scholar 

  86. Wang G, Chen T, Tian M, Ding G. Fluid and heat transfer characteristics of the microchannel heat sink with truncated rib on sidewall. Int J Heat Mass Tranf. 2020;148:119142.

    Google Scholar 

  87. Yao P, Zhai Y, Li Z, Shen X, Wang H. Thermal performance analysis of multi-objective optimized microchannels with triangular cavity and rib based on field synergy principle. Case Stud Therm Eng. 2021;25:100963.

    Google Scholar 

  88. Siu-Ho A, Qu W, Pfefferkorn F. Experimental study of pressure drop and heat transfer in a single-phase micropin-fin heat sink. J Electron Packag. 2007;129:479–87.

    CAS  Google Scholar 

  89. Liu M, Liu D, Xu S, Chen Y. Experimental study on liquid flow and heat transfer in micro square pin fin heat sink. Int J Heat Mass Transf. 2011;54:5602–11.

    CAS  Google Scholar 

  90. Sajedi R, Osanloo B, Talati F, Taghilou M. Splitter plate application on the circular and square pin fin heat sinks. Microelectron Reliab. 2016;62:91–101.

    Google Scholar 

  91. Yadav V, Baghel K, Kumar R, Kadam ST. Numerical investigation of heat transfer in extended surface microchannels. Int J Heat Mass Transf. 2016;93:612–22.

    CAS  Google Scholar 

  92. Yu X, Woodcock C, Plawsky J, Peles Y. An investigation of convective heat transfer in a microchannel with Piranha Pin Fin. Int J Heat Mass Tran. 2016;103:1125–32.

    Google Scholar 

  93. Yang D, Wang Y, Ding G, Jin Z, Zhao J, Wang G. Numerical and experimental analysis of the cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations. Appl Therm Eng. 2017;112:1547–56. https://doi.org/10.1016/j.applthermaleng.2016.08.211.

    Article  Google Scholar 

  94. Al-Asadi MT, Al-damook A, Wilson MCT. Assessment of vortex generator shapes and pin fin perforations for enhancing water-based heat sink performance. Int Commun Heat Mass Transf. 2018;91:1–10. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.002.

    Article  Google Scholar 

  95. Wang J, Yu K, Ye M, Wang E, Wang W, Sundén B. Effects of pin fins and vortex generators on thermal performance in a microchannel with Al2O3 nanofluids. Energy. 2022. https://doi.org/10.1016/j.energy.2021.122606.

    Article  PubMed  Google Scholar 

  96. Wang Y, Shin JH, Woodcock C, Yu X, Peles Y. Experimental and numerical study about local heat transfer in a microchannel with a pin fin. Int J Heat Mass Transf. 2018;121:534–46.

    Google Scholar 

  97. Prajapati YK. Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink. Int J Heat Mass Transf. 2019;137:1041–52.

    CAS  Google Scholar 

  98. Kadam ST, Kumar R, Abiev R. Performance augmentation of single-phase heat transfer in the open-type microchannel heat sink. J Thermophys Heat Transf. 2019;33(2):416–24.

    CAS  Google Scholar 

  99. Bhandari P, Prajapati YK. Thermal performance of open microchannel heat sink with variable pin fin height. Int J Therm Sci. 2021. https://doi.org/10.1016/j.ijthermalsci.2020.106609.

    Article  Google Scholar 

  100. Shah RK. LONDON, Alexander Louis. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic press, 2014.‏

  101. Qu W, Mudawar I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf. 2002;45:2549–65.

    CAS  Google Scholar 

  102. Pandey J, et al. Comparison of the parallel microchannel and Pin-Fin heat sinks: an experimental study. Mater Today Proc. 2022;56:845–50.

    Google Scholar 

  103. Lan J, Xie Y, Zhang D. Flow and heat transfer in microchannels with dimples and protrusions. J Heat Transf Transf ASME. 2012;134(2):021901.

    Google Scholar 

  104. Bi C, Tang GH, Tao WQ. Heat transfer enhancement in minichannel heat sinks with dimples and cylindrical grooves. Appl Therm Eng. 2013;55(1–2):121–32.

    Google Scholar 

  105. Li P, Zhang D, Xie Y. Heat transfer and flow analysis of Al2O3–water nanofluids in a microchannel with dimple and protrusion. Int J Heat Mass Transf. 2014;73(73):456–67.

    CAS  Google Scholar 

  106. Li P, Xie Y, Zhang D, Xie G. Heat transfer enhancement and entropy generation of nanofluids laminar convection in microchannels with flow control devices. Entropy. 2016;18(4):1.

    Google Scholar 

  107. Xu M, Lu H, Gong L, Chai JC, Duan X. Parametric numerical study of the flow and heat transfer in microchannel with dimples. Int Commun Heat Mass Trans. 2016;76:348–57.‏

    Google Scholar 

  108. Li P, Xie Y, Zhang D. Laminar flow and forced convective heat transfer of shear-thinning power-law fluids in dimpled and protruded microchannels. Int J Heat Mass Transf. 2016;99:372–82.

    CAS  Google Scholar 

  109. Huang X, Yang W, Ming T, Shen W, Yu X. Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. Int J Heat Mass Transf. 2017;112:113–24. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.078.

    Article  Google Scholar 

  110. Gan T, Ming T, Fang W, Liu Y, Miao L, Ren K, Ahmadi MH.  Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets. J Therm Anal Calorim. 2020;141:45–56.

    Google Scholar 

  111. Gupta A, Kumar M, Patil AK. Enhanced heat transfer in plate-fin heat sink with dimples and protrusions. Heat Mass Trans. 2019;55(8):2247–60.

    CAS  Google Scholar 

  112. Okab AK, Hasan HM, Hamzah M, Egab K, Al-Manea A, Yusaf T. Analysis of heat transfer and fluid flow in a microchannel heat sink with sidewall dimples and fillet profile. Int J Thermofluids. 2022;15:100192. https://doi.org/10.1016/j.ijft.2022.100192.

    Article  Google Scholar 

  113. Debbarma D, Pandey KM, Paul A. Performance enhancement of double-layer microchannel heat sink by employing dimples and protrusions on channel sidewalls. Math Probl Eng. 2022. https://doi.org/10.1155/2022/2923661.

    Article  Google Scholar 

  114. Ali ARI, Salam B. A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Appl Sci. 2020;2(10):1636.

    CAS  Google Scholar 

  115. Selimefendigil F, Öztop HF. Comparative study on different cooling techniques for photovoltaic thermal management: Hollow fins, wavy channel and insertion of porous object with hybrid nanofluids. Appl Therm Eng. 2023;228:120458.

    Google Scholar 

  116. Sadeghi R, et al. Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid Nanofluid. 2015;18:1023–30.

    CAS  Google Scholar 

  117. Saini A, et al. Nanofluids: a review preparation, stability, properties and applications. Int J Eng Res Technol. 2016;5(07):11–6.

    Google Scholar 

  118. Sahooli M, Sabbaghi S. CuO nanofluids: the synthesis and investigation of stability and thermal conductivity. J Nanofluids. 2012;1(2):155–60.

    CAS  Google Scholar 

  119. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    CAS  Google Scholar 

  120. Zhou L-P, et al. On the specific heat capacity of CuO nanofluid. Adv Mech Eng. 2010;2:172085.

    Google Scholar 

  121. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    CAS  Google Scholar 

  122. Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev. 2011;15:3271–7. https://doi.org/10.1016/j.rser.2011.04.025.

    Article  CAS  Google Scholar 

  123. Hwang Y, Park HS, Lee JK, Jung WH. Thermal conductivity and lubrication characteristics of nanofluids. Curr Appl Phys. 2006;6:67–71.

    Google Scholar 

  124. Lee SW, Park SD, Kang S, et al. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf. 2011;54:433–8.

    CAS  Google Scholar 

  125. Bobkov V, Fokin L, Petrov E, et al. Thermophysical properties of materials for nuclear engineering: a tutorial and collection of data. In: International atomic energy agency, Vienna, Austria (2018)

  126. Chung DDL. Materials for thermal conduction. Appl Therm Eng. 2001;21:1593–605.

    CAS  Google Scholar 

  127. Hofmeister AM. Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature. Phys Chem Miner. 2014;41:361–71.

    CAS  Google Scholar 

  128. Shackelford JF, Alexander W. CRC materials science and engineering handbook. 2000. https://doi.org/10.1604/9780849326967.

  129. Kim SH, Choi SR, Kim D. Thermal conductivity of metal oxide nano fluid: particle size dependence and effect of laser irradiation. J Heat Transf. 2007;129:298–307.

    CAS  Google Scholar 

  130. Maxwell JC. A treatise on electricity and magnetism. Dover Books on Physics Ser. 2003;1. https://doi.org/10.1604/9780486606361.

  131. Hamilton RL, Crosser OK. Thermal conductivity of heterogenous two-component systems. IEC Fundam. 1962;1:187–91.

    CAS  Google Scholar 

  132. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11:151–70.

    CAS  Google Scholar 

  133. Li C, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticles suspensions (nanofluids). J Appl Phys. 2006;99:084314.

    Google Scholar 

  134. Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofuids. AIChE J. 2003;49:1038–43.

    CAS  Google Scholar 

  135. Xue QZ. Model for thermal conductivity of carbon nanotube-based composites. Phys B Condens Matter. 2005;368:302–7.

    CAS  Google Scholar 

  136. Yang B. Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). J Heat Transf. 2008;130:042408.

    Google Scholar 

  137. Einstein A. A new determination of molecular dimensions. Ann Phys. 1906;19:289–306.

    CAS  Google Scholar 

  138. Brinkman HC. The viscosity of concentrated suspensions and solution. J Chem Phys. 1952;20:571–81.

    CAS  Google Scholar 

  139. Abu-Nada E. Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection. Int J Heat Fluid Flow. 2009;30:679–769.

    CAS  Google Scholar 

  140. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Google Scholar 

  141. Nguyen CT, Desgranges F, Roy G, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28:1492–506.

    CAS  Google Scholar 

  142. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fuid mixture. J Thermophys heat Transf. 1999;13:474–80.

    CAS  Google Scholar 

  143. Hung TC, Yan WM. Enhancement of thermal performance in a double-layered microchannel heat sink with nanofluids. Int J Heat Mass Transf. 2012;55(11–12):3225–38. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.057.

    Article  CAS  Google Scholar 

  144. Ahmed MA, Shuaib NH, Yusoff MZ. Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. Int J Heat Mass Transf. 2012;55(21–22):5891–8. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.086.

    Article  CAS  Google Scholar 

  145. Wang XD, An B, Lin L, Lee DJ. Inverse geometric optimization for the geometry of nanofluid-cooled microchannel heat sink. Appl Therm Eng. 2013;55(1–2):87–94. https://doi.org/10.1016/j.applthermaleng.2013.03.010.

    Article  CAS  Google Scholar 

  146. Selimefendigil F, Öztop HF. Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall. Int J Heat Mass Transf. 2017;1(110):231–47.

    Google Scholar 

  147. Sakanova A, Keian CC, Zhao J. Performance improvements of the microchannel heat sink using wavy channel and nanofluids. Int J Heat Mass Transf. 2015;89:59–74. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.033.

    Article  CAS  Google Scholar 

  148. Uysal C, Arslan K, Kurt H. A numerical analysis of fluid flow and heat transfer characteristics of ZnO-Ethylene glycol nanofluid in rectangular microchannels. Strojniski Vestnik/J Mech Eng. 2016;62(10):603–13. https://doi.org/10.5545/sv-jme.2015.3170.

    Article  Google Scholar 

  149. Akbari OA, Toghraie D, Karimipour A, Safaei MR, Goodarzi M, Alipour H, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a rib-microchannel. Appl Math Comput. 2016;290:135–53. https://doi.org/10.1016/j.amc.2016.05.053.

    Article  Google Scholar 

  150. Sivakumar A, Alagumurthi N, Senthilvelan T. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink. Heat Mass Transf. 2015;52:1265–74.

    Google Scholar 

  151. Rostami J, Abbassi A. Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian–Lagrangian method. Adv Powder Technol. 2016;27:9–18.

    CAS  Google Scholar 

  152. Anbumeenakshi C, Thansekhar MR. On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition. Appl Therm Eng. 2017;113:1437–43.

    CAS  Google Scholar 

  153. Naphon P, Nakharintr L, Wiriyasart S. Continuous nanofluids jet impingement heat transfer and flow in a micro-channel heat sink. Int J Heat Mass Transf. 2018;126:924–32. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.101.

    Article  CAS  Google Scholar 

  154. Ali AM, Shoukat AA, Tariq HA, et al. Header design optimization of mini-channel heat sinks using CuO–H2O and Al2O3–H2O nanofluids for thermal management. Arab J Sci Eng. 2019;44:10327–38. https://doi.org/10.1007/s13369-019-04022-2.

    Article  CAS  Google Scholar 

  155. Sajid MU, Ali HM, Sufyan A, et al. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94. https://doi.org/10.1007/s10973-019-08043-9.

    Article  CAS  Google Scholar 

  156. Balaji T, Selvam C, Lal DM, et al. Enhanced heat transport behavior of micro channel heat sink with graphene based nanofluids. Int Commun Heat Mass Transf. 2020;117:104716. https://doi.org/10.1016/j.icheatmasstransfer.2020.104716.

    Article  CAS  Google Scholar 

  157. Bazdar H, Toghraie D, Pourfattah F, et al. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J Therm Anal Calorim. 2019;139:2365–80. https://doi.org/10.1007/s10973-019-08637-3.

    Article  CAS  Google Scholar 

  158. Plant RD, Saghir MZ. Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger. Int Jo Thermofluids. 2021;9: 100055. https://doi.org/10.1016/j.ijft.2020.100055.

    Article  CAS  Google Scholar 

  159. Heidarshenas A, Azizi Z, Peyghambarzadeh SM, et al. Experimental investigation of heat transfer enhancement using ionic liquid-Al2O3 hybrid nanofluid in a cylindrical microchannel heat sink. Appl Therm Eng. 2021;191:116879. https://doi.org/10.1016/j.applthermaleng.2021.116879.

    Article  CAS  Google Scholar 

  160. Alkasmoul FS, Asaker M, Almogbel A, et al. Combined effect of thermal and hydraulic performance of different nanofluids on their cooling efficiency in microchannel heat sink. Case Stud Therm Eng. 2022;30:101776.

    Google Scholar 

  161. Saadoon ZH, et al. Improving the performance of mini-channel heat sink by using wavy channel and different types of nanofluids. Sci Rep. 2022;12(1):9402.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Babar H, Ali HM. Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges. J Mol Liq. 2019;281:598–633.

    CAS  Google Scholar 

  163. Selimefendigil F, Öztop HF. Analysis of hybrid nanofluid and surface corrugation in the laminar convective flow through an encapsulated PCM filled vertical cylinder and POD-based modeling. Int J Heat Mass Transf. 2021;178:121623.

    Google Scholar 

  164. Saadoon ZH, Ali FH, Sheikholeslami M. Numerical investigation of heat transfer enhancement using (Fe3O4 and Ag-H2O) nanofluids in (converge-diverge) mini-channel heat sinks. Mater Today Proc. 2023;80:2983.

    CAS  Google Scholar 

  165. Selvakumar P, Suresh S. Use of A2O3–Cu water hybrid nanofluid in an electronic heat sink. IEEE Trans Compon Packag Manuf Technol. 2012;2:1600–7.

    CAS  Google Scholar 

  166. Ho C-J, Chen W-C, Yan W-M. Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles. Int J Heat Mass Transf. 2014;69:293–9.

    CAS  Google Scholar 

  167. Nimmagadda R, Venkatasubbaiah K. Conjugate heat tranfer analysis of micro-channel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur J Mech-B/Fluids. 2015;52:19–27.

    Google Scholar 

  168. Kumar V, Sarkar J. Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation. Int Commun Heat Mass Transf. 2018;91:239–47.

    CAS  Google Scholar 

  169. Hussien AA, Abdullah MZ, Yusop NM, Al-Kouz W, Mahmoudi E, Mehrali M. Heat transfer and entropy generation abilities of MWCNTs/GNPs hybrid nanofluids in microtubes. Entropy. 2019;21:480.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bahiraei M, Heshmatian S. Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles. Energy Convers Manag. 2018;168:357–70.

    CAS  Google Scholar 

  171. Pahlevaninejad N, Rahimi M, Gorzin M. Thermal and hydrodynamic analysis of non-Newtonian nanofluid in wavy microchannel. J Therm Anal Calorim. 2020;143:811–25. https://doi.org/10.1007/s10973-019-09229-x.

    Article  CAS  Google Scholar 

  172. Souby MM, Bargal MHS, Wang Y. Thermohydraulic performance improvement and entropy generation characteristics of a microchannel heat sink cooled with new hybrid nanofluids containing ternary/binary hybrid nanocomposites. Energy Sci Eng. 2021;9:2493–513. https://doi.org/10.1002/ese3.982.

    Article  CAS  Google Scholar 

  173. Charab AA, Movahedirad S, Norouzbeigi R. Thermal conductivity of Al2O3 + TiO2/water nanofluid: model development and experimental validation. Appl Therm Eng. 2017;119:42–51.

    CAS  Google Scholar 

  174. Kumar V, Sarkar J. Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance. Appl Therm Eng. 2020;165:114546.

    CAS  Google Scholar 

  175. Moldoveanu GM, Huminic G, Minea AA, et al. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int J Heat Mass Transf. 2018;127:450–7.

    CAS  Google Scholar 

  176. Hamid KA, Azmi WH, Nabil MF, Mamat R, Sharma KV. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2–SiO2 nanofluids. Int J Heat Mass Transf. 2018;116:1143–52.

    CAS  Google Scholar 

  177. Dalkılıç AS, Açıkgöz Ö, Küçükyıldırım BO, et al. Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. Int Commun Heat Mass Transf. 2018;97(30):38.

    Google Scholar 

  178. Siddiqui FR, Tso CY, Chan KC, et al. On trade-off for dispersion stability and thermal transport of Cu–Al2O3 hybrid nanofluid for various mixing ratios. Int J Heat Mass Transf. 2019;132:1200–16.

    CAS  Google Scholar 

  179. Zawawi NNM et al. Experimental investigation on stability and thermo-physical properties of Al2O3–SiO2/PAG nanolubricants with different nanoparticle ratios. J Therm Anal Calorim. 2019;135:1243–55.

    Google Scholar 

  180. Esfe MH, Abad ATK, Fouladi M. Effect of suspending optimized ratio of nanoadditives MWCNT-Al2O3 on viscosity behavior of 5W50. J Mol Liq. 2019;285:572–85.

  181. Selimefendigil F, ÖZTOP HF. Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall. Int J Heat Mass Transf. 2017;110:231–47.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehad Abid Allah Hamza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, N.A.A., Abed, I.M. Hydrothermal performance through multiple shapes of microchannels (MCHS) using nanofluids: an exhaustive review. J Therm Anal Calorim 148, 13729–13760 (2023). https://doi.org/10.1007/s10973-023-12602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12602-6

Keywords

Navigation