Skip to main content
Log in

An experimental investigation on non-preheated MILD combustion of syngas/ammonia/air

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work studies the MILD (moderate or intense low-oxygen dilution) combustion behavior of syngas/ammonia/air. This study considers the variation of temperature distribution and pollutant emissions for different equivalence ratios, CO dilution, and ammonia addition. The results suggested that the MILD combustion technique can provide higher-level temperature uniformity and lower-level emissions by maintaining the same thermal efficiency. It was also demonstrated that equivalence ratio (φ) variations sensibly affect the MILD temperature structure and pollutant emissions. Under rich-burn conditions, infrequent oxygen molecules are more likely to react with NHi molecules due to their weaker bonds. Therefore, the presence of NH, NH2, and H radicals is more common. On the contrary, the abundance of oxygen molecules in lean mixtures results in O and OH radical generation. Regarding the pollutant emission issue, it was concluded that two primary NO generation mechanisms control the NOx quantity. Since both of these chain reaction mechanisms depend on O and OH content, the NOx production was intensified in the lean-burn mode. It was also revealed that changing the H2 and CO content has little effect on NOx generation. On the other hand, increasing the ammonia portion raises the NH2 production. The NH2 molecules react with O and OH radicals, producing higher amounts of NO. Therefore, the ammonia addition may result in an increment of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cavaliere A, De Joannon M. Mild combustion. Prog Energy Combust Sci. 2004;30:329–66. https://doi.org/10.1016/j.pecs.2004.02.003.

    Article  CAS  Google Scholar 

  2. De Joannon M, Saponaro A, Cavaliere A. Zero-dimensional analysis of diluted oxidation of methane in rich conditions. P Combust Inst. 2000;28:1639–46. https://doi.org/10.1016/S0082-0784(00)80562-7.

    Article  Google Scholar 

  3. Abtahizadeh E, van Oijen J, de Goey P. Numerical study of mild combustion with entrainment of burned gas into oxidizer and/or fuel streams. Combust Flame. 2012;159:2155–65. https://doi.org/10.1016/j.combustflame.2012.02.004.

    Article  CAS  Google Scholar 

  4. Mörtberg M, Blasiak W, Gupta AK. Experimental investigation of flow phenomena of a single fuel jet in cross-flow during highly preheated air combustion conditions. J Eng Gas Turbine Power. 2007;129:556–64. https://doi.org/10.1115/1.2436558.

    Article  CAS  Google Scholar 

  5. Arghode VK, Gupta AK. Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion. Appl Energy. 2010;87:1631–40. https://doi.org/10.1016/j.apenergy.2009.09.032.

    Article  CAS  Google Scholar 

  6. Weber R, Orsino S, Lallemant N, Verlaan A. Combustion of natural gas with high-temperature air and large quantities of flue gas. P Combust Inst. 2000;28:1315–21. https://doi.org/10.1016/S0082-0784(00)80345-8.

    Article  CAS  Google Scholar 

  7. Guo H, Ju Y, Maruta K, Niioka T. Numerical study of NOx emission in high temperature air combustion. JSME Int J Ser B. 1998;41:331–7. https://doi.org/10.1299/jsmeb.41.331.

    Article  CAS  Google Scholar 

  8. Kumar S, Paul P, Mukunda H. Investigations of the scaling criteria for a mild combustion burner. P Combust Inst. 2005;30:2613–21. https://doi.org/10.1016/j.proci.2004.07.045.

    Article  CAS  Google Scholar 

  9. Tsuji H, Gupta AK, Hasegawa T, Katsuki M, Kishimoto K, Morita M. High temperature air combustion: from energy conservation to pollution reduction. Boca Raton, FL, USA: CRC Press; 2002.

    Book  Google Scholar 

  10. Liu C, Hu X, Chen G, Lu J. Temperature and NOx distribution characteristics of coal particles under high-temperature and low-oxygen environments simulating MILD oxy-coal combustion conditions. J Energy Inst. 2022;101:73–86. https://doi.org/10.1016/j.joei.2022.01.009.

    Article  CAS  Google Scholar 

  11. Liu Y, Zhang J, Ju D, Shi L, Han D. Second-law thermodynamic analysis on non-premixed counterflow methane flames with hydrogen addition. J Therm Anal Calorim. 2020;139:2577–83. https://doi.org/10.1007/s10973-019-08583-0.

    Article  CAS  Google Scholar 

  12. Weber R, Smart JP, vd Kamp W. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. P Combust Inst. 2005;30:2623–9. https://doi.org/10.1016/j.proci.2004.08.101.

    Article  CAS  Google Scholar 

  13. Suda T, Takafuji M, Hirata T, Yoshino M, Sato J. A study of combustion behavior of pulverized coal in high-temperature air. P Combust Inst. 2002;29:503–9. https://doi.org/10.1016/S1540-7489(02)80065-7.

    Article  CAS  Google Scholar 

  14. Gao X, Duan F, Lim SC, Yip MS. NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions. Energy. 2013;59:559–69. https://doi.org/10.1016/j.energy.2013.07.022.

    Article  CAS  Google Scholar 

  15. Kuang Y, He B, Tong W, Wang C. Flow and reaction characteristics at different oxygen concentrations and inlet velocities in pulverized coal MILD combustion. J Energy Inst. 2021;94:63–72. https://doi.org/10.1016/j.joei.2020.11.004.

    Article  CAS  Google Scholar 

  16. Zhang H, Yue G, Lu J, Jia Z, Mao J, Fujimori T, et al. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers. P Combust Inst. 2007;31:2779–85. https://doi.org/10.1016/j.proci.2006.07.135.

    Article  CAS  Google Scholar 

  17. Katsuki M, Hasegawa T. The science and technology of combustion in highly preheated air. In: Symposium (International) on combustion. Elsevier; 1998. pp. 3135-3146

  18. Weidmann M, Honoré D, Verbaere V, Boutin G, Grathwohl S, Godard G, et al. Experimental characterization of pulverized coal MILD flameless combustion from detailed measurements in a pilot-scale facility. Combust Flame. 2016;168:365–77. https://doi.org/10.1016/j.combustflame.2016.01.029.

    Article  CAS  Google Scholar 

  19. Dally BB, Riesmeier E, Peters N. Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust Flame. 2004;137:418–31. https://doi.org/10.1016/j.combustflame.2004.02.011.

    Article  CAS  Google Scholar 

  20. Szegö G, Dally B, Nathan G. Operational characteristics of a parallel jet MILD combustion burner system. Combust Flame. 2009;156:429–38. https://doi.org/10.1016/j.combustflame.2008.08.009.

    Article  CAS  Google Scholar 

  21. Xu S, Tu Y, Huang P, Luan C, Wang Z, Shi B, et al. Effects of wall temperature on methane MILD combustion and heat transfer behaviors with non-preheated air. Appl Therm Eng. 2020;174:115282. https://doi.org/10.1016/j.applthermaleng.2020.115282.

    Article  CAS  Google Scholar 

  22. Liu Y, Cheng J, Zou C, Cai L, He Y, Zheng C. Experimental and numerical study on the CO formation mechanism in methane MILD combustion without preheated air. Fuel. 2017;192:140–8. https://doi.org/10.1016/j.fuel.2016.12.010.

    Article  CAS  Google Scholar 

  23. Cao S, Zou C, Han Q, Liu Y, Wu D, Zheng C. Numerical and experimental studies of no formation mechanisms under methane moderate or intense low-oxygen dilution (MILD) combustion without heated air. Energy Fuels. 2015;29:1987–96. https://doi.org/10.1021/ef501943v.

    Article  CAS  Google Scholar 

  24. Tu Y, Su K, Liu H, Wang Z, Xie Y, Zheng C, et al. MILD combustion of natural gas using low preheating temperature air in an industrial furnace. Fuel Process Technol. 2017;156:72–81. https://doi.org/10.1016/j.fuproc.2016.10.024.

    Article  CAS  Google Scholar 

  25. Mi J, Li P, Dally BB, Craig RA. Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace. Energy Fuels. 2009;23:5349–56. https://doi.org/10.1021/ef900866v.

    Article  CAS  Google Scholar 

  26. Mardani A, Mahalegi HKM. Hydrogen enrichment of methane and syngas for MILD combustion. Int J Hydrog Energy. 2019;44:9423–37. https://doi.org/10.1016/j.ijhydene.2019.02.072.

    Article  CAS  Google Scholar 

  27. Huang M-m, Shao W-w, Xiong Y, Liu Y, Zhang Z-d, Lei F-l, et al. Effect of fuel injection velocity on MILD combustion of syngas in axially-staged combustor. Appl Therm Eng. 2014;66:485–92. https://doi.org/10.1016/j.applthermaleng.2014.02.033.

    Article  CAS  Google Scholar 

  28. Huang M, Zhang Z, Shao W, Xiong Y, Liu Y, Lei F, et al. Effect of air preheat temperature on the MILD combustion of syngas. Energy Convers Manage. 2014;86:356–64. https://doi.org/10.1016/j.enconman.2014.05.038.

    Article  CAS  Google Scholar 

  29. Maab MPG, Bathaei S, Kim M, Esfahani JA, Kim KC. Effect of air humidity on premixed combustion of ammonia/air under engine relevant conditions: numerical investigation. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11883-7.

    Article  Google Scholar 

  30. Izanloo M, Mehrpooya M. Investigation of a hybrid thermochemical Cu–Cl cycle, carbon capturing, and ammonia production process. J Therm Anal Calorim. 2021;144:1907–23. https://doi.org/10.1007/s10973-021-10768-5.

    Article  CAS  Google Scholar 

  31. Valeh-e-Sheyda P, Rashidi H, Ghaderzadeh F. Integration of commercial CO2 capture plant with primary reformer stack of ammonia plant. J Therm Anal Calorim. 2019;135:1899–909. https://doi.org/10.1007/s10973-018-7215-x.

    Article  CAS  Google Scholar 

  32. Hua J, Wang K, Wang Q, Peng R. Feasibility of Fe-based nitrogen carrier for chemical looping ammonia synthesis: thermodynamics. J Therm Anal Calorim. 2021;146:673–80. https://doi.org/10.1007/s10973-020-10029-x.

    Article  CAS  Google Scholar 

  33. Noor M, Wandel AP, Yusaf T. Effect of air-fuel ratio on temperature distribution and pollutants for biogas MILD combustion. Int J Automot Mech. 2014;10:1980–92.

    Article  CAS  Google Scholar 

  34. Colorado A, Herrera B, Amell A. Performance of a flameless combustion furnace using biogas and natural gas. Bioresour Technol. 2010;101:2443–9. https://doi.org/10.1016/j.biortech.2009.11.003.

    Article  PubMed  CAS  Google Scholar 

  35. Hosseini SE, Wahid MA. Biogas utilization: Experimental investigation on biogas flameless combustion in lab-scale furnace. Energy Convers Manage. 2013;74:426–32. https://doi.org/10.1016/j.enconman.2013.06.026.

    Article  CAS  Google Scholar 

  36. Huang M, Zhang Z, Shao W, Xiong Y, Liu Y, Lei F, et al. Coal-derived syngas MILD combustion in parallel jet forward flow combustor. Appl Therm Eng. 2014;71:161–8. https://doi.org/10.1016/j.applthermaleng.2014.06.044.

    Article  CAS  Google Scholar 

  37. Dally BB, Shim SH, Craig RA, Ashman PJ, Szegö GG. On the burning of sawdust in a MILD combustion furnace. Energy Fuels. 2010;24:3462–70. https://doi.org/10.1021/ef901583k.

    Article  CAS  Google Scholar 

  38. Berwal P, Kumar S, Khandelwal B. A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion. J Energy Inst. 2021;99:273–98. https://doi.org/10.1016/j.joei.2021.10.001.

    Article  CAS  Google Scholar 

  39. Chen J, Chen G, Zhang A, Deng H, Wen X, Wang F, et al. Experimental and numerical study on the effect of CO2 dilution on the laminar combustion characteristics of premixed CH4/H2/air flame. J Energy Inst. 2022;102:315–26. https://doi.org/10.1016/j.joei.2022.04.002.

    Article  CAS  Google Scholar 

  40. Bazooyar B, Coomson G, Manovic V, Nabavi SA. Comparative analysis of ammonia combustion for domestic applications. J Energy Inst. 2022. https://doi.org/10.1016/j.joei.2022.10.008.

    Article  Google Scholar 

  41. Zhou S, Yang W, Tan H, An Q, Wang J, Dai H, et al. Experimental and kinetic modeling study on NH3/syngas/air and NH3/bio-syngas/air premixed laminar flames at elevated temperature. Combust Flame. 2021;233:111594. https://doi.org/10.1016/j.combustflame.2021.111594.

    Article  CAS  Google Scholar 

  42. Kiani M, Kohansal M, Masoumi S, Afzalnia A, Inanlu MJ, Ashjaee M, et al. An experimental investigation of ammonia/landfill/air mixtures’ pollutant emissions and temperature distribution under non-preheated moderate or intense low-oxygen dilution combustion. Environ Sci Pollut Res. 2022. https://doi.org/10.1007/s11356-022-24986-3.

    Article  Google Scholar 

  43. Szegö G, Dally B, Nathan G. Scaling of NOx emissions from a laboratory-scale mild combustion furnace. Combust Flame. 2008;154:281–95. https://doi.org/10.1016/j.combustflame.2008.02.001.

    Article  CAS  Google Scholar 

  44. Wünning JA, Wünning JG. Flameless oxidation to reduce thermal NO-formation. Prog Energy Combust Sci. 1997;23:81–94. https://doi.org/10.1016/S0360-1285(97)00006-3.

    Article  Google Scholar 

  45. Kiani M, Houshfar E, Niaraki Asli AE, Ashjaee M. Combustion of syngas in intersecting burners using the interferometry method. Energy Fuels. 2017;31:10121–32. https://doi.org/10.1021/acs.energyfuels.7b01612.

    Article  CAS  Google Scholar 

  46. Khan AR, Anbusaravanan S, Kalathi L, Velamati R, Prathap C. Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames. Fuel. 2017;196:225–32. https://doi.org/10.1016/j.fuel.2017.01.086.

    Article  CAS  Google Scholar 

  47. Kiani M, Houshfar E, Ashjaee M. Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners. Energy. 2019;170:507–20. https://doi.org/10.1016/j.energy.2018.12.188.

    Article  CAS  Google Scholar 

  48. Han X, Wang Z, Costa M, Sun Z, He Y, Cen K. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combust Flame. 2019;206:214–26. https://doi.org/10.1016/j.combustflame.2019.05.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Houshfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, M., Kohansal, M., Masoumi, S. et al. An experimental investigation on non-preheated MILD combustion of syngas/ammonia/air. J Therm Anal Calorim 148, 11783–11797 (2023). https://doi.org/10.1007/s10973-023-12512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12512-7

Keywords

Navigation