Skip to main content

Advertisement

Log in

Cubic plus association (CPA/qCPA) and classical thermodynamic modeling of pharmaceuticals solubility in supercritical carbon dioxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The processing of pharmaceuticals by supercritical fluids requires the correct assessment and prediction of the solubility of solid compounds in a supercritical fluid. In this work, the solubility of two drugs, namely ibuprofen and salicylic acid, in supercritical carbon dioxide at different temperatures (308–333 K) and pressures up to 35 MPa was regressed using four different thermodynamic models: Soave–Redlich–Kwong equation of state, cubic plus association equation of state, quadrupolar cubic plus association (qCPA), and the regular solution theory tuned by the Flory–Huggins equation. Adjustable parameters of each model were regressed and reported at the studied temperatures. A comparison of the models’ performances showed that CPA and qCPA models with AARD% 1.34 and 2.16 for ibuprofen and 1.63 and 1.65 for salicylic acid are superior to the other applied methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fonseca JM, Dohrn R, Peper S. High-pressure fluid-phase equilibria: experimental methods and systems investigated (2005–2008). Fluid Ph Equilib. 2011;300(1–2):1–69.

    CAS  Google Scholar 

  2. Manjare SD, Dhingra KJMSFET. Supercritical fluids in separation and purification: a review. Mater Sci Energy Technol. 2019;2(3):463–84.

    Google Scholar 

  3. Sodeifian G, Sajadian SA, Ardestani NSJTJOSF. Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: process optimization and oil properties. J Supercrit Fluids. 2017;119:139–49.

    CAS  Google Scholar 

  4. Sodeifian G, Ardestani NS, Sajadian SA, Moghadamian KJTJOSF. Properties of Portulaca oleracea seed oil via supercritical fluid extraction: experimental and optimization. J Supercrit Fluids. 2018;135:34–44.

    CAS  Google Scholar 

  5. Sodeifian G, Alwi RS, Razmimanesh F, Roshanghias AJTJoSF. Solubility of pazopanib hydrochloride (PZH, anticancer drug) in supercritical CO2: experimental and thermodynamic modeling. J Supercrit Fluids. 2022;190:105759.

    CAS  Google Scholar 

  6. Abadian M, Sodeifian G, Razmimanesh F, Mahmoudabadi SZJFPE. Experimental measurement and thermodynamic modeling of solubility of Riluzole drug (neuroprotective agent) in supercritical carbon dioxide. Fluid Ph Equilib. 2023;567:113711.

    CAS  Google Scholar 

  7. Smigic N, Djekic I, Tomic N, Udovicki B, Rajkovic A. The potential of foods treated with supercritical carbon dioxide (SC–CO2) as novel foods. Br Food J. 2019;121(3):815–34.

    Google Scholar 

  8. Lane MKM, Zimmerman JB. Controlling metal oxide nanoparticle size and shape with supercritical fluid synthesis. Green Chem. 2019;21(14):3769–81.

    CAS  Google Scholar 

  9. Ghoderao PN, Dhamodharan D, Mubarak S, Byun H-S. Phase behavioral study of binary systems for the vinyl benzoate, vinyl pivalate and vinyl octanoate with carbon dioxide at high-pressure. J Mol Liq. 2022;358:119131.

    CAS  Google Scholar 

  10. Ghoderao PN, Dhamodharan D, Byun H-S. Binary mixture phase equilibria for the vinyl laurate, vinyl methacrylate and vinyl propionate under high pressure carbon dioxide. J Chem Thermodyn. 2022;168:106746.

    CAS  Google Scholar 

  11. Ghoderao PN, Lee C-W, Byun H-S. Chemistry E. Phase behavior investigation of the vinyl toluene and poly (vinyl toluene)+ co-solvents in supercritical CO2. J Ind Eng Chem. 2023;121:92–9.

    CAS  Google Scholar 

  12. Fathi M, Sodeifian G, Sajadian SAJTJoSF. Experimental study of ketoconazole impregnation into polyvinyl pyrrolidone and hydroxyl propyl methyl cellulose using supercritical carbon dioxide: process optimization. J Supercrit Fluids. 2022;188:105674.

    CAS  Google Scholar 

  13. De Zordi N, Kikic I, Moneghini M, Solinas D. Solubility of pharmaceutical compounds in supercritical carbon dioxide. J Supercrit Fluids. 2012;66:16–22.

    Google Scholar 

  14. Ongkasin K, Sauceau M, Masmoudi Y, Fages J, Badens E. Solubility of cefuroxime axetil in supercritical CO2: measurement and modeling. J Supercrit Fluids. 2019;152:104498.

    CAS  Google Scholar 

  15. Ardestani NS, Sodeifian G, Sajadian SAJH. Preparation of phthalocyanine green nano pigment using supercritical CO2 gas antisolvent (GAS): experimental and modeling. Heliyon. 2020;6(9):e04947.

    Google Scholar 

  16. Yang T-M, Li J-S, Yeh T-F, Su C-S. Solid solubilities of sulfonamides and use of rapid expansion of supercritical solutions for microparticle production. Chem Eng Technol. 2020;43(6):1115–23.

    CAS  Google Scholar 

  17. Fang C-H, Chen P-H, Chen Y-P, Tang M. Micronization of three active pharmaceutical ingredients using the rapid expansion of supercritical solution technology. Chem Eng Technol. 2020;43(6):1186–93.

    CAS  Google Scholar 

  18. Villalva M, Jaime L, Villanueva-Bermejo D, Lara B, Fornari T, Reglero G, et al. Supercritical anti-solvent fractionation for improving antioxidant and anti-inflammatory activities of an Achillea millefolium L. extract. Food Res Int. 2019;115:128–34.

    CAS  PubMed  Google Scholar 

  19. Akolade JO, Balogun M, Swanepoel A, Ibrahim RB, Yusuf AA, Labuschagne P. Microencapsulation of eucalyptol in polyethylene glycol and polycaprolactone using particles from gas-saturated solutions. RSC Adv. 2019;9(58):34039–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim YN, Kim Y-O, Kim SY, Park M, Yang B, Kim J, et al. Application of supercritical water for green recycling of epoxy-based carbon fiber reinforced plastic. Compos Sci Technol. 2019;173:66–72.

    CAS  Google Scholar 

  21. Khairutdinov V, Salikhov I, Gumerov F, Yarullin LY, Farakhov MJRJoPCB. Oil wellhead cleaning from asphaltene-resin-paraffin deposits using a supercritical propan/burane mixture. Russ J Phys Chem B. 2021;15(8):1296–8.

    CAS  Google Scholar 

  22. Zhang Y, Zhang X, Chi S, Li ZJB. Pulping of bamboo using supercritical ammonia with recovery and reuse of the ammonia. BioResources. 2019;14(3):5586–94.

    CAS  Google Scholar 

  23. Ashraf-Khorassani M, Combs MT, Taylor LT, Schweighardt FK, Mathias PSJJoC, Data E. Solubility study of sulfamethazine and sulfadimethoxine in supercritical carbon dioxide, fluoroform, and subcritical freon 134A. J Chem Eng Data. 1997;42(3):636–40.

    CAS  Google Scholar 

  24. Krukonis VJ, McHugh MA, Seckner AJJTJoPC. Xenon as a supercritical solvent. J Phys Chem. 1984;88(13):2687–9.

    CAS  Google Scholar 

  25. Shirazizadeh HA, Bakhshi H, Pahlavanzadeh H. Volume expansion and vapour–liquid equilibrium of toluene and ethanol with carbon dioxide at high pressures for the selection of optimum operational condition in the GAS process. Phys Chem Liquids. 2018;56(2):164–75.

    CAS  Google Scholar 

  26. Bazmi M, Askari S, Ghasemy E, Rashidi A, Ettefaghi E. Nitrogen-doped carbon nanotubes for heat transfer applications. J Therm Anal Calorim. 2019;138(1):69–79.

    CAS  Google Scholar 

  27. de Melo M, Sapatinha M, Pinheiro J, Lemos M, Bandarra N, Batista I, et al. Supercritical CO2 extraction of Aurantiochytrium sp. biomass for the enhanced recovery of omega-3 fatty acids and phenolic compounds. J CO2 Util. 2020;38:24–31.

    Google Scholar 

  28. Khoobkar Z, Amrei HD, Heydarinasab A, Mirzaie MAM. Biofixation of CO2 and biomass production from model natural gas using microalgae: an attractive concept for natural gas sweetening. J CO2 Util. 2022;64:102153.

    CAS  Google Scholar 

  29. Tabarkhoon F, Abolghasemi H, Rashidi A, Bazmi M, Alivand MS, Tabarkhoon F, et al. Synthesis of novel and tunable micro-mesoporous carbon nitrides for ultra-high CO2 and H2S capture. Chem Eng J. 2023;456:140973.

    CAS  Google Scholar 

  30. Choo Y-S, Yeo W-H, Byun H-S. Phase equilibria and cloud-point behavior for the poly (2-phenylethyl methacrylate) in supercritical CO2 with monomers as co-solvent. J CO2 Util. 2019;31:215–25.

    CAS  Google Scholar 

  31. Bartle K, Clifford A, Jafar S, Shilstone G. Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. J Phys Chem Ref Data. 1991;20(4):713–56.

    CAS  Google Scholar 

  32. Méndez-Santiago J, Teja AS. The solubility of solids in supercritical fluids. Fluid Ph Equilib. 1999;158:501–10.

    Google Scholar 

  33. Sparks DL, Estévez LA, Hernandez R, Barlow K, French T. Solubility of nonanoic (pelargonic) acid in supercritical carbon dioxide. J Chem Eng Data. 2008;53(2):407–10.

    CAS  Google Scholar 

  34. Kumar SK, Johnston KP. Modelling the solubility of solids in supercritical fluids with density as the independent variable. J Supercrit Fluids. 1988;1(1):15–22.

    CAS  Google Scholar 

  35. Abdi-Khangh M, Bemani A, Naserzadeh Z, Zhang Z. Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN. J CO. Phase behavior investigation of the viny Util. 2018;25:108–19.

    Google Scholar 

  36. Cai Z-Z, Liang H-H, Chen W-L, Lin S-T, Hsieh C-MJFPE. First-principles prediction of solid solute solubility in supercritical carbon dioxide using PR+ COSMOSAC EOS. Fluid Ph Equilib. 2020;522:112755.

    CAS  Google Scholar 

  37. Estévez LA, Colpas FJ, Müller EAJCES. A simple thermodynamic model for the solubility of thermolabile solids in supercritical fluids. Chem Eng Sci. 2021;232:116268.

    Google Scholar 

  38. Pahlavanzadeh H, Bakhshi H. Measurement and modeling of acridine solubility in supercritical carbon dioxide. J Chem Petrol Eng. 2011;45(2):131–40.

    Google Scholar 

  39. Li H, Jia D, Liu R, Shen B. Correlating and estimating the solubilities of solid organic compounds in supercritical CO2 based on the modified expanded liquid model and the group contribution method. Fluid Ph Equilib. 2015;385:10–24.

    CAS  Google Scholar 

  40. Pahlavanzadeh H, Bakhshi H, Shirazizadeh HA. Experimental measurement and phase equilibria calculation for ternary systems of carbon dioxide+ toluene+ naphthalene and carbon dioxide+ ethanol+ acridine, applicable for fine particle production in GAS process. Thermochim Acta. 2016;638:69–79.

    CAS  Google Scholar 

  41. Mobalegholeslam P, Bakhshi H. A new model of excess gibbs energy for systems containing polymer–salt–water applicable to aqueous two phase systems. J Solut Chem. 2016;45(12):1826–41.

    CAS  Google Scholar 

  42. Sodeifian G, Hazaveie SM, Sajadian SA, Saadati AN. Determination of the solubility of the repaglinide drug in supercritical carbon dioxide: experimental data and thermodynamic modeling. J Chem Eng Data. 2019;64(12):5338–48.

    CAS  Google Scholar 

  43. Edrisi S, Bakhshi H, Rahimnejad M. Experimental and thermodynamic modeling of quaternary aqueous two-phase system of poly ethylene glycol, sodium tartrate, water and penicillin G. J Solut Chem. 2019;48(8–9):1206–21.

    CAS  Google Scholar 

  44. Chapman WG, Gubbins KE, Jackson G, Radosz M. SAFT: Equation-of-state solution model for associating fluids. Fluid Ph Equilib. 1989;52:31–8.

    CAS  Google Scholar 

  45. Chapman WG, Gubbins KE, Jackson G, Radosz M. New reference equation of state for associating liquids. Ind Eng Chem Res. 1990;29(8):1709–21.

    CAS  Google Scholar 

  46. Gross J. An equation-of-state contribution for polar components: quadrupolar molecules. AIChE J. 2005;51(9):2556–68.

    CAS  Google Scholar 

  47. Esmaeilzadeh F, Goodarznia I, Daneshi R. Solubility calculation of oil-conta-minated drill cuttings in supercritical carbon dioxide using statistical associating fluid theory (PC-SAFT). Chem Eng Technol. 2008;31(1):66–70.

    CAS  Google Scholar 

  48. Huang SH, Radosz M. Equation of state for small, large, polydisperse, and associating molecules. Ind Eng Chem Res. 1990;29(11):2284–94.

    CAS  Google Scholar 

  49. Huang SH, Radosz M. Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures. Ind Eng Chem Res. 1991;30(8):1994–2005.

    CAS  Google Scholar 

  50. Bjørner MG, Kontogeorgis GM. Modeling derivative properties and binary mixtures with CO2 using the CPA and the quadrupolar CPA equations of state. Fluid Ph Equilib. 2016;408:151–69.

    Google Scholar 

  51. Zhong C, Yang H. Representation of the solubility of solids in supercritical fluids using the SAFT equation of state. Ind Eng Chem Res. 2002;41(19):4899–905.

    CAS  Google Scholar 

  52. Bitencourt RG, Palma AM, Coutinho JA, Cabral FA, Meirelles AJ. Prediction of solid solute solubility in supercritical CO2 with cosolvents using the CPA EoS. Fluid Ph Equilib. 2019;482:1–10.

    CAS  Google Scholar 

  53. Mota FL, Queimada AJ, Pinho SP, Macedo EA. Solubility of drug-like molecules in pure organic solvents with the CPA EoS. Fluid Ph Equilib. 2011;303(1):62–70.

    CAS  Google Scholar 

  54. Ardjmand M, Mirzajanzadeh M, Zabihi F. Measurement and correlation of solid drugs solubility in supercritical systems. Chin J Chem Eng. 2014;22(5):549–58.

    CAS  Google Scholar 

  55. Ke J, Mao C, Zhong M, Han B, Yan H. Solubilities of salicylic acid in supercritical carbon dioxide with ethanol cosolvent. J Supercrit Fluids. 1996;9(2):82–7.

    CAS  Google Scholar 

  56. Reverchon E, Donsi G, Gorgoglione D. Salicylic acid solubilization in supercritical CO2 and its micronization by RESS. J Supercrit Fluids. 1993;6(4):241–8.

    CAS  Google Scholar 

  57. Prausnitz JM, Lichtenthaler RN, de Azevedo EG. Molecular thermodynamics of fluid-phase equilibria. New York: Pearson Education; 1998.

    Google Scholar 

  58. Poling BE, Prausnitz JM, O’connell JP. The properties of gases and liquids. New York: Mcgraw-hill; 2001.

    Google Scholar 

  59. Ambrose D, Walton J. Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols. Pure Appl Chem. 1989;61(8):1395–403.

    CAS  Google Scholar 

  60. Soave G. Equilibrium constants from a modified Redlich–Kwong equation of state. Chem Eng Sci. 1972;27(6):1197–203.

    CAS  Google Scholar 

  61. Kontogeorgis GM, Voutsas EC, Yakoumis IV, Tassios DP. An equation of state for associating fluids. Ind Eng Chem Res. 1996;35(11):4310–8.

    CAS  Google Scholar 

  62. Wertheim M. Fluids with highly directional attractive forces. I. Statistical thermodynamics. J Stat Phys. 1984;35(1–2):19–34.

    Google Scholar 

  63. Wertheim M. Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J Stat Phys. 1984;35(12):35–47.

    Google Scholar 

  64. Wertheim M. Fluids with highly directional attractive forces. III. Multiple attraction sites. J Stat Phys. 1986;42(3–4):459–76.

    Google Scholar 

  65. Wertheim M. Fluids with highly directional attractive forces IV Equilibrium polymerization. J Stat Phys. 1986;42(3–4):477–92.

    Google Scholar 

  66. Kontogeorgis GM, Yakoumis IV, Meijer H, Hendriks E, Moorwood T. Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures. Fluid Ph Equilib. 1999;158:201–9.

    Google Scholar 

  67. Larsen B, Rasaiah J, Stell G. Thermodynamic perturbation theory for multipolar and ionic liquids. Mol Phys. 1977;33(4):987–1027.

    CAS  Google Scholar 

  68. Gubbins KE, Twu C. Thermodynamics of polyatomic fluid mixtures—I theory. Chem Eng Sci. 1978;33(7):863–78.

    CAS  Google Scholar 

  69. Twu C, Gubbins K. Thermodynamics of polyatomic fluid mixtures—II: polar, quadrupolar and octopolar molecules. Chem Eng Sci. 1978;33(7):879–87.

    CAS  Google Scholar 

  70. Kontogeorgis GM, Folas GK. Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. Hoboken: Wiley; 2009.

    Google Scholar 

  71. Su C-S, Chen Y-P. Correlation for the solubilities of pharmaceutical compounds in supercritical carbon dioxide. Fluid Ph Equilib. 2007;254(1–2):167–73.

    CAS  Google Scholar 

  72. Mota FL, Queimada AJ, Pinho SP, Macedo EA. Water solubility of drug-like molecules with the cubic-plus-association equation of state. Fluid Ph Equilib. 2010;298(1):75–82.

    CAS  Google Scholar 

  73. Peng D-Y, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fund. 1976;15(1):59–64.

    CAS  Google Scholar 

  74. Pang T, McLaughlin E. Supercritical extraction of aromatic hydrocarbon solids and tar sand bitumens. Ind Eng Chem Proc Des Dev. 1985;24(4):1027–32.

    CAS  Google Scholar 

  75. Ely J, Haynes W, Bain B. Isochoric (p, Vm, T) measurements on CO2 and on (0.982 CO2+ 0.018 N2) from 250 to 330 K at pressures to 35 MPa. J Chem Thermodyn. 1989;21(8):879–94.

    CAS  Google Scholar 

  76. Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 1974;14(2):147–54.

    CAS  Google Scholar 

  77. Cachadina I, Mulero A. Vaporization enthalpy: corresponding-states correlations versus DIPPR database. J Phys Chem Ref Data. 2007;36(3):1133–9.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant program no. BNUT/390058/98.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bakhshi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edrisi, S., Bakhshi, H. Cubic plus association (CPA/qCPA) and classical thermodynamic modeling of pharmaceuticals solubility in supercritical carbon dioxide. J Therm Anal Calorim 148, 7269–7279 (2023). https://doi.org/10.1007/s10973-023-12211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12211-3

Keywords

Navigation