Skip to main content
Log in

Crystal packing driven comparable thermal expansion of a biimidazole-based energetic material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal expansion is one of the important reasons for the stress increase in polymer bonded explosive (PBX) and the damage of the long-term storage structure of explosives. Herein, the thermal expansion characteristics and crystal damage behavior under thermal stimulation of three crystal forms (β, α and γ) of 4,4′,5,5′-tetranitro-1H,1′H- [2,2′-biimidazole]-1,1′-diamine (DATNBI) were analyzed. The results show that DATNBI has obvious anisotropic thermal expansion, in which β- and α-DATNBI are first-order thermal expansion, and γ-DATNBI is second-order thermal expansion. The thermal expansion of DATNBI is reversible, but the crystal damage caused by thermal expansion is irreversible. Combined with Rietveld Refinement of powder X-ray diffraction (XRD) patterns, the volumetric expansion coefficients are 17.98 × 10−5 °C−1 (β-DATNBI), 23.28 × 10−5 °C−1 (α-DATNBI) and 14.39 × 10−5 °C−1 (γ-DATNBI), respectively. The relationship between crystal packing and thermal expansion characteristics of DATNBI at different temperatures was studied. It is demonstrated that the thermal expansion can probe certain intermolecular interactions resulting in anisotropic expansion behavior. Usually, the thermal expansion of most crystals (β-DATNBI) is positive, but slip or dislocation may cause a smaller negative expansion of a certain axis of the crystal cell (α-DATNBI). However, the unique cross-cross grid crystal packing (γ-DATNBI) will make a certain axis of the cell appear obvious negative expansion, which may lead to the overall decrease in the volumetric expansion coefficient of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yan TG, Yang HW, Yang C, Yi ZX, Zhu SG, Cheng GB. An advanced and applicable heat-resistant explosive through controllable regiochemical modulation. J Mater Chem A. 2020;8:23857–65.

    Article  CAS  Google Scholar 

  2. Xu JJ, Zheng SS, Huang SL, Tian Y, Liu Y, Zhang HB, Sun J. Host–guest energetic materials constructed by incorporating oxidizing gas molecules into an organic lattice cavity toward achieving highly-energetic and low-sensitivity performance. Chem Commun. 2019;55(7):909–12.

    Article  CAS  Google Scholar 

  3. Yuan S, Li ZQ, Luo QP, Duan XH, Pei CH. Preparation and thermal decomposition properties of nitrated graphene oxide (NGO)/RDX nano-energetic composites. J Therm Anal Calorim. 2020;139:1671–9.

    Article  CAS  Google Scholar 

  4. Sun SH, Zhang HB, Wang ZQ, Xu JJ, Huang SL, Tian Y, Sun J. Smart host-guest energetic material constructed by stabilizing energetic fuel hydroxylamine in lattice cavity of 2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane significantly enhanced the detonation, safety, propulsion, and combustion performances. ACS Appl Mater Interfaces. 2021;13(51):61324–33.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao YX, Liu T, Danesh NN, Sun YF, Liu SM, Wang Y. Quantification of pore modification in coals due to pulverization using synchrotron small angle X-ray scattering. J Nat Gas Sci Eng. 2020;84:103669.

    Article  Google Scholar 

  6. Avdeev MV, Tropin TV, Aksenov VL, Rosta L, Garamus VM, Rozhkova NN. Pore structures in shungites as revealed by small-angle neutron scattering. Carbon. 2006;44:954–61.

    Article  CAS  Google Scholar 

  7. Zhao YX, Peng L, Liu SM, Cao B, Sun YF, Hou BF. Pore structure characterization of shales using synchrotron SAXS and NMR cryoporometry. Mar Pet Geol. 2019;102:116–25.

    Article  Google Scholar 

  8. Prehal C, Grätz S, Krüner B, Thommes M, Borchardt L, Presser V, Paris O. Comparing pore structure models of nanoporous carbons obtained from small angle X-ray scattering and gas adsorption. Carbon. 2019;152:416–23.

    Article  CAS  Google Scholar 

  9. Li T, Senesi AJ, Lee B. Small angle X-ray scattering for nanoparticle research. Chem Rev. 2016;116:11128–80.

    Article  CAS  PubMed  Google Scholar 

  10. Fratzl P, Vogl G, Klaumünzer S. Small-angle scattering from porous amorphous substances. J Appl Crystallogr. 1991;24:588–92.

    Article  CAS  Google Scholar 

  11. Stoltz CA, Mason BP, Hooper J. Neutron scattering study of internal void structure in RDX. J Appl Phys. 2010;107:103527.

    Article  Google Scholar 

  12. Fratzl P. Small-angle scattering in materials science-a short review of applications in alloys, ceramics and composite materials. J Appl Crystallogr. 2003;36:397–404.

    Article  CAS  Google Scholar 

  13. Xue C, Sun J, Kang B, Liu Y, Liu X, Song G, Xue Q. The β-δ phase transition and thermal expansion of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Propellants Explos Pyrotech. 2010;35:333–8.

    Article  CAS  Google Scholar 

  14. Willey TM, Lauderbach L, Gagliardi F, Buuren T, Glascoe EA, Tringe JW, Lee JRI, Springer HK, Ilavsky J. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ polymorphic transition. J Appl Phys. 2015;118:055901.

    Article  Google Scholar 

  15. Bouma RHB, Duvalois W, Van Der Heijiden AEDM. Microscopic characterization of defect structure in RDX crystals. J Microsc. 2013;252:263–74.

    Article  CAS  PubMed  Google Scholar 

  16. Sun J, Shu XY, Liu Y, Zhang HB, Liu XF, Jiang Y, Kang B, Xue C, Song GB. Investigation on the thermal expansion and theoretical density of 1,3,5-trinitro-1,3,5-triazacyclohexane. Propellants Explos Pyrotech. 2011;36:341–6.

    Article  Google Scholar 

  17. Pu L, Xu JJ, Song GB, Tian Y, Zhang HB, Liu XF, Sun J. Investigation on the thermal expansion of α-CL-20 with different water contents. J Therm Anal Calorim. 2015;122:1355–64.

    Article  CAS  Google Scholar 

  18. Pu L, Xu JJ, Liu XF, Sun J. Investigation on the thermal expansion of four polymorphs of crystalline CL-20. J Energ Mater. 2016;34(2):205–15.

    Article  CAS  Google Scholar 

  19. Li JY, Zhang HB, Wen MP, Xu JJ, Liu XF, Sun J. The temperature-dependent thermal expansion of 2,6-diamino-3,5-dinitropyrazine-1-oxide effected by hydrogen bond network relaxation. J Energ Mater. 2015;34(2):170–82.

    Article  Google Scholar 

  20. Tao YT, Xu JJ, Zhang HB, Yang ZY, Lei M, Sun J. Thermal expansion characteristics of a new type high energy explosive ICM-101. Chin J Energ Mater (Hannengcailiao). 2021;29(7):641–9.

    CAS  Google Scholar 

  21. Sun J, Kang B, Xue C, Liu Y, Xia YX, Liu XF, Wei Z. Crystal state of 1,3,5-T riamino-2,4,6-T rinitrobenzene (TATB) undergoing thermal cycling process. J Energ Mater. 2010;28:189–201.

    Article  CAS  Google Scholar 

  22. Liang WH, Wang JN, Liu HN, Meng ZH, Qiu LL, Wang SS. Thermally induced polymorphic transformation of Hexanitrohexaazaisowurtzitane (CL-20). Powder Technol. 2022;395:732–42.

    Article  CAS  Google Scholar 

  23. Michael H, Ulrich FB. Thermal behavior and micro structure of TKX-50. Propellants Explos Pyrotech. 2021;46:262–6.

    Article  Google Scholar 

  24. Qing M, Lu HC, Liao LY, Fan GJ, Huang JL. One-pot synthesis, crystal structure, and thermal decomposition behavior of 1,1ʹ-diamino-4,4′,5,5′-tetranitro-2,2′-biimidazole. J Energ Mater. 2017;35:239–49.

    Article  Google Scholar 

  25. Zhang ZQ, Wen Q, Lu HC, Yang W, Zhang CY, Fan GJ, Ma Q. Polymorphism in a nonsensitive-high- energy material: discovery of a new polymorph and crystal structure of 4,4′,5,5′-tetranitro-1H,1′H- [2,2′-biimidazole]-1,1′′-diamine. Cryst Growth Des. 2020;20:8005–14.

    Article  CAS  Google Scholar 

  26. Wang ZQ, Zhang ZQ, Sun SH, Yan M, Huang SL, Hu SQ, Xu JJ, Hu LS. Tailoring crystal polymorphs of 4,4′,5,5′-tetranitro-1H,1′H-[2,2′-biimidazole]-1,1′-diamine (DATNBI) towards high heat-resistant performance and low sensitivity. Energ Mater Front. 2022;3:74–83.

    Article  CAS  Google Scholar 

  27. Ilavsky J, Jemian PR. Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr. 2009;42:347–53.

    Article  CAS  Google Scholar 

  28. Rietveld H. A profile refinement method for nuclear and magnetic structure. J Appl Crystallogr. 1969;2:65–71.

    Article  CAS  Google Scholar 

  29. Evans J. Topas V5.0.

  30. Evers J, Klapötke TM, Mayer P, Oehlinger G, Welch J. α- and β-FOX-7, Polymorphs of a High Energy Density Material, Studied by X-ray Single Crystal and Powder Investigations in the Temperature Range from 200 to 423 K. Inorg Chem. 2006;45:4996–5007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22275177, 21805259, 21975234), The Defense Technology Projects of China (JCJQ-JJ-418).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenqi Zhang or Jinjiang Xu.

Ethics declarations

Conflict of interest

We confirmed that there is no conflict of interest, and this is an original work. The manuscript was not yet submitted for other publications.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15221 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jin, D., Du, Z. et al. Crystal packing driven comparable thermal expansion of a biimidazole-based energetic material. J Therm Anal Calorim 148, 4001–4014 (2023). https://doi.org/10.1007/s10973-023-12036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12036-0

Keywords

Navigation