Skip to main content
Log in

An experimental study on ferrofluid flow and heat transfer in a micro-fin straight circular tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of various tools to improve heat transfer in fluid flow by researchers is steadily increasing. These tools result in the use of active and passive methods. In this article, an experimental study of heat transfer and fluid flow in a micro-fin tube has been done. Using a micro-fin tube along with using magnetic nanofluid (Ferrofluid) instead of pure water in the test bed made in this research are two ways to improve the heat transfer coefficient. The magnetic nanofluid has been checked for particle size and stability before use. Validation of the results has been done and the results have shown good compliance. The Nusselt number and pressure drop for pure water and magnetic nanofluid in the micro-fin tube are reported separately. A maximum Nu number enhancement of 23% and the most pressure loss of 24.3% are recorded in this research. Two empirical correlations are presented in order to predict Nusselt in a micro-fin tube for pure water and magnetic nanofluid with a mass fraction of 1% in a laminar flow regime. Performance coefficient has been used to accurately check the effect of pressure drop and Nusselt number. The results showed that using ferrofluid in a micro-finned tube in a flow with a lower Reynolds number results in a much better performance, and as the Reynolds number increases, the performance coefficient decreases and approaches to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\dot{m}\) :

Mass flow rate (kg s1)

\(q^{\prime \prime }\) :

Heat flux (W m2)

P :

Pressure (Pa)

A :

Tube’s area (m2)

C :

Specific heat capacity (J kg1 K1)

D :

Tube’s diameter (mm)

I :

Electrical current (A)

L :

Length tube (m)

T :

Temperature (K)

V :

Electrical potential (V)

f :

Friction factor

h :

Convection heat transfer coefficient (W m2 K1)

k :

Conduction heat transfer coefficient (W m1 K1)

u :

Flow velocity (m s1)

x :

Coordinate

\(\Delta\) :

Difference

\(\delta\) :

Uncertainty

\(\rho\) :

Density (kg m3)

\(\partial\) :

Derivation parameter

D:

Tube diameter

el:

Electrical

in:

Internal

loss:

Loss

m:

Mean

out:

Outlet

s:

Surface

th:

Thermal

\(x^{*}\) :

Non-dimensional axial length

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

HT:

Heat transfer

TCC:

Thermal conductivity coefficient

RSME:

Root means square error

References

  1. Liu M-S, Lin MC-C, Huang I-T, Wang C-C. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf. 2005;32(9):1202–10.

    Article  CAS  Google Scholar 

  2. Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol Ind Chem-Plant Equipment-Process Eng-Biotechnol. 2006;29(1):72–7.

    Google Scholar 

  3. Keblinski P, Prasher R, Eapen J. Thermal conductance of nanofluids: Is the controversy over? J Nanopart Res. 2008;10(7):1089–97.

    Article  Google Scholar 

  4. Abareshi M, Goharshadi EK, Zebarjad SM, Fadafan HK, Youssefi A. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater. 2010;322(24):3895–901.

    Article  CAS  Google Scholar 

  5. Gürdal M, Pazarlıoğlu HK, Tekir M, Altunay FM, Arslan K, Gedik E. Implementation of hybrid nanofluid flowing in dimpled tube subjected to magnetic field. Int Commun Heat Mass Transf. 2022;134: 106032.

    Article  Google Scholar 

  6. Ahmed F, Abir MA, Fuad M, Akter F, Bhowmik PK, Alam SB, et al. Numerical investigation of the thermo-hydraulic performance of water-based nanofluids in a dimpled channel flow using Al2O3, CuO, and hybrid Al2O3–CuO as nanoparticles. Heat Transf. 2021;50(5):5080–105.

    Article  Google Scholar 

  7. Bergles AE. Recent developments in enhanced heat transfer. Heat Mass Transf. 2011;47(8):1001–8.

    Article  Google Scholar 

  8. Bergles A. Some perspectives on enhanced heat transfer—second-generation heat transfer technology. 1988.

  9. Bergles AE, Manglik RM. Current progress and new developments in enhanced heat and mass transfer. J Enhanced Heat Transf. 2013;20(1).

  10. Sheng M, Yang H, Cahela DR, Tatarchuk BJ. Novel catalyst structures with enhanced heat transfer characteristics. J Catal. 2011;281(2):254–62.

    Article  CAS  Google Scholar 

  11. Han DH, Lee K-J. Single-phase heat transfer and flow characteristics of micro-fin tubes. Appl Therm Eng. 2005;25(11–12):1657–69.

    Article  Google Scholar 

  12. Naphon P. Effect of coil-wire insert on heat transfer enhancement and pressure drop of the horizontal concentric tubes. Int Commun Heat Mass Transf. 2006;33(6):753–63.

    Article  Google Scholar 

  13. Li X-W, Meng J-A, Li Z-X. Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube. Exp Thermal Fluid Sci. 2007;32(2):641–8.

    Article  CAS  Google Scholar 

  14. Zdaniuk GJ, Chamra LM, Mago PJ. Experimental determination of heat transfer and friction in helically-finned tubes. Exp Thermal Fluid Sci. 2008;32(3):761–75.

    Article  Google Scholar 

  15. Siddique M, Alhazmy M. Experimental study of turbulent single-phase flow and heat transfer inside a micro-finned tube. Int J Refrig. 2008;31(2):234–41.

    Article  CAS  Google Scholar 

  16. Al-Fahed S, Ayub Z, Al-Marafie A, Soliman B. Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow conditions. Exp Thermal Fluid Sci. 1993;7(3):249–53.

    Article  CAS  Google Scholar 

  17. Copetti JB, Macagnan MH, De Souza D, Césaro Oliveski RD, editors. Experimental study on thermal and hydraulic behavior of micro-fin tubes in single phase. 17th International Congress of Mechanical Engineering, November; 2003.

  18. Gnielinski V. New equations for heat and mass transfer in the turbulent flow in pipes and channels. NASA STI/recon Technical Report A. 1975;41(1):8–16.

    CAS  Google Scholar 

  19. Zdaniuk GJ, Luck R, Chamra LM. Linear correlation of heat transfer and friction in helically-finned tubes using five simple groups of parameters. Int J Heat Mass Transf. 2008;51(13–14):3548–55.

    Article  CAS  Google Scholar 

  20. Bharadwaj P, Khondge A, Date A. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert. Int J Heat Mass Transf. 2009;52(7–8):1938–44.

    Article  CAS  Google Scholar 

  21. Derakhshan MM, Akhavan-Behabadi M. Mixed convection of MWCNT–heat transfer oil nanofluid inside inclined plain and microfin tubes under laminar assisted flow. Int J Therm Sci. 2016;99:1–8.

    Article  CAS  Google Scholar 

  22. Ji W-T, Jacobi AM, He Y-L, Tao W-Q. Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow. Int J Heat Mass Transf. 2015;88:735–54.

    Article  Google Scholar 

  23. He G-D, Fang X-M, Xu T, Zhang Z-G, Gao X-N. Forced convective heat transfer and flow characteristics of ionic liquid as a new heat transfer fluid inside smooth and microfin tubes. Int J Heat Mass Transf. 2015;91:170–7.

    Article  CAS  Google Scholar 

  24. Hekmatipour F, Akhavan-Behabadi M, Sajadi B. Combined free and forced convection heat transfer of the copper oxide-heat transfer oil (CuO-HTO) nanofluid inside horizontal tubes under constant wall temperature. Appl Therm Eng. 2016;100:621–7.

    Article  CAS  Google Scholar 

  25. Mahmoudi M, Tavakoli MR, Mirsoleimani MA, Gholami A, Salimpour MR. Experimental and numerical investigation on forced convection heat transfer and pressure drop in helically coiled pipes using TiO2/water nanofluid. Int J Refrig. 2017;74:627–43.

    Article  CAS  Google Scholar 

  26. Li L, Cui W, Liao Q, Mingdao X, Jen T-C, Chen Q. Heat transfer augmentation in 3D internally finned and microfinned helical tube. Int J Heat Mass Transf. 2005;48(10):1916–25.

    Article  Google Scholar 

  27. Farahani SD, Farahani M, Ghanbari D. Heat transfer from R134a/oil boiling flow in pipe: Internal helical fin and hybrid nanoparticles. Chem Eng Res Des. 2021;175:75–84.

    Article  CAS  Google Scholar 

  28. Fahim T, Laouedj S, Abderrahmane A, Alotaibi S, Younis O, Ali HM. Heat transfer enhancement in parabolic through solar receiver: a three-dimensional numerical investigation. Nanomaterials. 2022;12(3):419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pai Y-W, Yeh R-H. Experimental investigation of heat transfer and pressure drop characteristics of internal finned tubes. Int J Heat Mass Transf. 2022;183: 122183.

    Article  CAS  Google Scholar 

  30. Farahani SD, Sheikhi R, Kisomi MS. Natural convection heat transfer in the annular space by using novel fins and water droplets injection. Braz J Chem Eng. 2022;39(2):441–54.

    Article  CAS  Google Scholar 

  31. Fan J, Ding W, Zhang J, He Y, Tao W. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving. Int J Heat Mass Transf. 2009;52(1–2):33–44.

    Article  Google Scholar 

  32. Khoshvaght-Aliabadi M, Ahmadian E, Sartipzadeh O. Effects of different pin-fin interruptions on performance of a nanofluid-cooled zigzag miniature heat sink (MHS). Int Commun Heat Mass Transf. 2017;81:19–27.

    Article  CAS  Google Scholar 

  33. Davoudi A, Daneshmand S, Monfared V, Mohammadzadeh K. Numerical simulation on heat transfer of nanofluid in conical spiral heat exchanger. Prog Comput Fluid Dyn Int J. 2021;21(1):52–63.

    Article  Google Scholar 

  34. Khoshvaght-Aliabadi M, Sartipzadeh O, Pazdar S, Sahamiyan M. Experimental and parametric studies on a miniature heat sink with offset-strip pins and Al2O3/water nanofluids. Appl Therm Eng. 2017;111:1342–52.

    Article  CAS  Google Scholar 

  35. Abadeh A, Passandideh-Fard M, Maghrebi MJ, Mohammadi M. Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method. J Therm Anal Calorim. 2019;135(2):1323–34.

    Article  CAS  Google Scholar 

  36. Abadeh A, Sardarabadi M, Abedi M, Pourramezan M, Passandideh-Fard M, Maghrebi MJ. Experimental characterization of magnetic field effects on heat transfer coefficient and pressure drop for a ferrofluid flow in a circular tube. J Mol Liq. 2020;299: 112206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abazar Abadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abadeh, A., Davoodabadi Farahani, S., Mohammadzadeh, K. et al. An experimental study on ferrofluid flow and heat transfer in a micro-fin straight circular tube. J Therm Anal Calorim 148, 8375–8386 (2023). https://doi.org/10.1007/s10973-023-12024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12024-4

Keywords

Navigation