Skip to main content
Log in

Integrated microchannel cooling for densely packed electronic components using vanadium pentaoxide (V2O5)-xerogel nanoplatelets-based nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study reports the implementation of novel nanoplatelets-based vanadium pent oxide (V2O5)-xerogel for the application of conjugate cooling in densely packed electronic devices. An integrated heat sink is made up of copper with a channel width of 490 µm and is shrink-fitted into aluminium block that acts as a heat spreader. V2O5-xerogel is synthesized by melt quenching process and characterized based on field emission scanning electron microscope, transmission electron microscope, and X-ray diffraction to analyse the surface morphology of the particles. Studies related to the stability of the nanofluids for different concentrations are discussed in this paper. Furthermore, a study on the effect of pulsating flow in microchannel is performed for different flow rates. As a result, a maximum enhancement of 17% in heat transfer coefficient was observed for the concentration of 0.4 mass% with a flow rate of 200 mL min-1 compared to a pure fluid. Finally, the results reveal that the xerogel is a potential working fluid for heat transfer applications involving microscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Abbreviations

MEMS:

Micro-electromechanical systems

NEMS:

Nano-electromechanical systems

MHS:

Microchannel heat sink

Ag:

Silver

CuO:

Copper oxide

TiO2 :

Titanium oxide

Al2O3 :

Aluminium oxide

Cu:

Copper

SiO2 :

Silicon oxide

CNT:

Carbon nanotubes

SWCNT:

Single-walled carbon nanotubes

GNP:

Graphene nanoplatelets

ZnO:

Zinc oxide

DW:

Distilled water

BNN:

Boron nitrate nanotubes

PEG:

Polyethylene glycol

CNC:

Cellulose nanocrystal

PVDF:

Polyvinylidene fluoride

FeV3O8 :

Iron vanadium oxide

BET:

Brunauer–Emmett–Teller

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

XRD:

X-ray diffraction

MVO:

Mesoporous vanadium oxide

P :

Perimeter of the channel

A c :

Area of the channel

Nuz :

Local Nusselt number

D h :

Hydraulic diameter

h z :

Local heat transfer coefficient

T f :

Temperature of the fluid

T w :

Temperature of the wall

q" :

Heat flux

h avg :

Average heat transfer coefficient

k :

Thermal conductivity

A :

Height of the microchannel

B :

Width of the channel

C :

Gap between the channels

D :

Gap between the channel bottoms to thermocouple

tin :

Temperature in

t out :

Temperature out

P in :

Pressure in

P out :

Pressure out

F in :

Fluid inlet

F out :

Fluid outlet

f :

Friction factor

\(\dot{m}\) :

Mass flow rate

Re:

Reynolds number

Z :

Cartesian coordinate

X :

Cartesian coordinates

Y :

Cartesian coordinate

Ø:

Volume fraction

p :

Particles

C p :

Specific heat

S:

Solid region

f:

Fluid region

nf:

Nanofluid

bf:

Basefluid

l,b,h :

Length, breadth and height of copper channel

L,B,H :

Length, breadth and height of aluminium block

t1-t6:

Thermocouple locations of copper channel

tA11-tA16:

Thermocouple locations of aluminium block

ρ :

Density

μ:

Dynamic viscosity

Ω:

Electrical resistance

Δ:

Difference

ϕ:

Nanoparticle volume fraction

References

  1. Sajjad U, Hamid K, Tauseef-ur-Rehman Sultan M, Abbas N, Ali HM, et al. Personal thermal management—A review on strategies, progress, and prospects. Int Commun Heat Mass Transf. 2022;130:105739. https://doi.org/10.1016/j.icheatmasstransfer.2021.105739.

    Article  Google Scholar 

  2. Sharaf M, Yousef MS, Huzayyin AS. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environ Sci Pollut Res. 2022;29:26131–59. https://doi.org/10.1007/s11356-022-18719-9.

    Article  Google Scholar 

  3. Gad-el-hak M. Mohamed Gad-el-Hak (1999) The fluid mechanics of microdevices-The freeman scholar lecture. J Fluids Eng Trans ASME [Internet] 1. Available from: http://fluidsengineering.asmedigitalcollection.asme.org/

  4. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices [Internet]. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-09760-2.

    Article  Google Scholar 

  5. Ambreen T, Saleem A, Tanveer M, K A, Shehzad SA, Park CW. Irreversibility and hydrothermal analysis of the MWCNTs/GNPs-based nanofluids for electronics cooling applications of the pin-fin heat sinks: multiphase Eulerian-Lagrangian modeling. Case Stud Therm Eng. 2022;31:101806. https://doi.org/10.1016/j.csite.2022.101806.

    Article  Google Scholar 

  6. Ibrahim M, Berrouk AS, Algehyne EA, Saeed T, Chu YM. Energetic and exergetic analysis of a new circular micro-heat sink containing nanofluid: applicable for cooling electronic equipment. J Therm Anal Calorim. 2021;145:1547–57. https://doi.org/10.1007/s10973-021-10722-5.

    Article  CAS  Google Scholar 

  7. Mohammed HA, Bhaskaran G, Shuaib NH, Saidur R. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew Sustain Energy Rev. 2011;15:1502–12. https://doi.org/10.1016/j.rser.2010.11.031.

    Article  CAS  Google Scholar 

  8. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Dev Lett. 1981;2:126–9.

    Article  Google Scholar 

  9. Rostami S, Kalbasi R, Talebkeikhah M, Goldanlou AS. Improving the thermal conductivity of ethylene glycol by addition of hybrid nano-materials containing multi-walled carbon nanotubes and titanium dioxide: applicable for cooling and heating. J Therm Anal Calorim. 2021;143:1701–12. https://doi.org/10.1007/s10973-020-09921-3.

    Article  CAS  Google Scholar 

  10. Eshgarf H, Kalbasi R, Maleki A, Shadloo MS, karimipour A. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J Therm Anal Calorim. 2021;144:1959–83. https://doi.org/10.1007/s10973-020-09998-w.

    Article  CAS  Google Scholar 

  11. Narendran G, Bhat MM, Akshay L, Arumuga PD. Experimental analysis on exergy studies of flow through a minichannel using TiO2/Water nanofluids. Therm Sci Eng Prog. 2018;8:93–104.

    Article  Google Scholar 

  12. Zhang LY, Zhang YF, Chen JQ, Bai SL. Fluid flow and heat transfer characteristics of liquid cooling microchannels in LTCC multilayered packaging substrate. Int J Heat Mass Transf. 2015;84:339–45. https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.079.

    Article  CAS  Google Scholar 

  13. Wang G, Niu D, Xie F, Wang Y, Zhao X, Ding G. Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling. Appl Therm Eng. 2015;85:61–70. https://doi.org/10.1016/j.applthermaleng.2015.04.009.

    Article  Google Scholar 

  14. Narendran G, Gnanasekaran N, Perumal DA. A review on recent advances in microchannel heat sink configurations. Recent Patents Mech Eng. 2018;11:190–215.

    Article  Google Scholar 

  15. Narendran G, Kumar A, Gnanasekaran N, Perumal DA. (2022) A numerical study on microgap- based focal brain cooling device to mitigate hotspot for the treatment of epileptic seizure. ASME Open J Eng 1.

  16. Panse SS, Ekkad SV. Forced convection cooling of additively manufactured single and double layer enhanced microchannels. Int J Heat Mass Transf. 2021;168:120881. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120881.

    Article  Google Scholar 

  17. Wang SL, Zhu JF, An D, Zhang BX, Chen LY, Yang YR, et al. Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design. Int J Therm Sci. 2022;171:107229.

    Article  Google Scholar 

  18. Khoshvaght-Aliabadi M, Feizabadi A, Salimi A, Rashidi MM. Temperature nonuniformity management in heat sinks through applying counter-flow design complex minichannels. Korean J Chem Eng. 2022;39:1436–49.

    Article  CAS  Google Scholar 

  19. Babar H, Wu H, Ali HM, Shah TR, Zhang W. Staggered oriented airfoil shaped pin-fin heat sink: Investigating the efficacy of novel water based ferric oxide-silica hybrid nanofluid. Int J Heat Mass Transf. 2022;194:123085. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123085.

    Article  CAS  Google Scholar 

  20. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Am Soc Mech Eng Fluids Eng Div FED. 1995;231:99–105.

    CAS  Google Scholar 

  21. Azizi Z, Alamdari A, Malayeri MR. Convective heat transfer of Cu-water nanofluid in a cylindrical microchannel heat sink. Energy Convers Manag. 2015;101:515–24. https://doi.org/10.1016/j.enconman.2015.05.073.

    Article  CAS  Google Scholar 

  22. Jung JY, Oh HS, Kwak HY. (2006) Forced convective heat transfer of nanofluids in microchannels. Am Soc Mech Eng Heat Transf Div HTD.1–6.

  23. Nimmagadda R, Venkatasubbaiah K. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur J Mech B/Fluids. 2015;52:19–27. https://doi.org/10.1016/j.euromechflu.2015.01.007.

    Article  Google Scholar 

  24. Singh PK, Harikrishna PV, Sundararajan T, Das SK. Experimental and numerical investigation into the hydrodynamics of nanofluids in microchannels. Exp Therm Fluid Sci. 2012;42:174–86. https://doi.org/10.1016/j.expthermflusci.2012.05.004.

    Article  CAS  Google Scholar 

  25. Manay E, Sahin B. The effect of microchannel height on performance of nanofluids. Int J Heat Mass Transf. 2016;95:307–20. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.015.

    Article  CAS  Google Scholar 

  26. Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, et al. The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq. 2017;236:254–65. https://doi.org/10.1016/j.molliq.2017.04.030.

    Article  CAS  Google Scholar 

  27. Rimbault B, Nguyen CT, Galanis N. Experimental investigation of CuO–water nanofluid flow and heat transfer inside a microchannel heat sink. Int J Therm Sci. 2014;84:275–92. https://doi.org/10.1016/j.ijthermalsci.2014.05.025.

    Article  CAS  Google Scholar 

  28. Zhang H, Shao S, Xu H, Tian C. Heat transfer and flow features of Al2O3-water nanofluids flowing through a circular microchannel-Experimental results and correlations. Appl Therm Eng. 2013;61:86–92. https://doi.org/10.1016/j.applthermaleng.2013.07.026.

    Article  CAS  Google Scholar 

  29. Ahmed HE, Ahmed MI, Seder IMF, Salman BH. Experimental investigation for sequential triangular double-layered microchannel heat sink with nanofluids. Int Commun Heat Mass Transf. 2016;77:104–15. https://doi.org/10.1016/j.icheatmasstransfer.2016.06.010.

    Article  CAS  Google Scholar 

  30. Anbumeenakshi C, Thansekhar MR. On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition. Appl Therm Eng. 2017;113:1437–43. https://doi.org/10.1016/j.applthermaleng.2016.11.144.

    Article  CAS  Google Scholar 

  31. Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf. 2005;48:2652–61.

    Article  CAS  Google Scholar 

  32. Narendran G, Gnanasekaran N, Perumal DA. Thermodynamic irreversibility and conjugate effects of integrated microchannel cooling device using TiO2 nanofluid. Heat and Mass Transfer. 2020;56:489–505.

    Article  CAS  Google Scholar 

  33. Bhattacharya P, Samanta AN, Chakraborty S. Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat Mass Transf und Stoffuebertragung. 2009;45:1323–33.

    Article  CAS  Google Scholar 

  34. Peyghambarzadeh SM, Hashemabadi SH, Chabi AR, Salimi M. Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels. Energy Convers Manag. 2014;86:28–38. https://doi.org/10.1016/j.enconman.2014.05.013.

    Article  CAS  Google Scholar 

  35. Chamsa-ard W, Brundavanam S, Fung CC, Fawcett D, Poinern G. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review. Nanomaterials. 2017;7:131.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huq T, Ong HC, Chew BT, Leong KY, Kazi SN. Review on aqueous graphene nanoplatelet nanofluids: preparation, stability, thermophysical properties, and applications in heat exchangers and solar thermal collectors. Appl Therm Eng. 2022;210:118342. https://doi.org/10.1016/j.applthermaleng.2022.118342.

    Article  CAS  Google Scholar 

  37. Sharma AK, Tiwari AK, Dixit AR. Characterization of TiO2, Al2O3 and SiO2 nanoparticle based cutting fluids. Mater Today Proc. 2016;3:1890–8. https://doi.org/10.1016/j.matpr.2016.04.089.

    Article  Google Scholar 

  38. Abbasi A, Gul M, Farooq W, Khan SU, Aydi A, Ayadi B, et al. A comparative thermal investigation for modified hybrid nanofluid model (Al2O3–SiO2–TiO2)/(C2H6O2) due to curved radiated surface. Case Stud Therm Eng. 2022;37:102295. https://doi.org/10.1016/j.csite.2022.102295.

    Article  Google Scholar 

  39. Yılmaz Aydın D, Gürü M. Nanofluids: preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-021-11092-8.

    Article  Google Scholar 

  40. Yu W, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60.

    Article  CAS  Google Scholar 

  41. Murshed SMS, Nieto De Castro CA. Superior thermal features of carbon nanotubes-based nanofluids—A review. Renew Sustain Energy Rev. 2014;37:155–67. https://doi.org/10.1016/j.rser.2014.05.017.

    Article  CAS  Google Scholar 

  42. Yadav P, Gupta SM, Sharma SK. A review on stabilization of carbon nanotube nanofluid. J Therm Anal Calorim. 2022;147:6537–61. https://doi.org/10.1007/s10973-021-10999-6.

    Article  CAS  Google Scholar 

  43. Lin H, Jian Q, Bai X, Li D, Huang Z, Huang W, et al. Recent advances in thermal conductivity and thermal applications of graphene and its derivatives nanofluids. Appl Therm Eng. 2023;218:119176. https://doi.org/10.1016/j.applthermaleng.2022.119176.

    Article  CAS  Google Scholar 

  44. Khoshvaght-Aliabadi M, Davoudi S, Dibaei MH. Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chem Eng Res Des. 2018;133:26–39. https://doi.org/10.1016/j.cherd.2018.02.030.

    Article  CAS  Google Scholar 

  45. Narendran G, Gnanasekaran N, ArumugaPerumal D. Experimental investigation on heat spreader integrated microchannel using graphene oxide nanofluid. Heat Transf Eng. 2020;41:1252–74. https://doi.org/10.1080/01457632.2019.1637136.

    Article  CAS  Google Scholar 

  46. Kumar LH, Kazi SN, Masjuki HH, Zubir MNM, Jahan A, Sean OC. Experimental study on the effect of bio-functionalized graphene nanoplatelets on the thermal performance of liquid flat plate solar collector. J Therm Anal Calorim. 2022;147:1657–74. https://doi.org/10.1007/s10973-020-10527-y.

    Article  CAS  Google Scholar 

  47. Sadeghinezhad E, Mehrali M, Saidur R, Mehrali M, Tahan Latibari S, Akhiani AR, et al. A comprehensive review on graphene nanofluids: recent research, development and applications. Energy Convers Manag. 2016;111:466–87. https://doi.org/10.1016/j.enconman.2016.01.004.

    Article  CAS  Google Scholar 

  48. Bahiraei M, Heshmatian S. Graphene family nanofluids: a critical review and future research directions. Energy Convers Manag. 2019;196:1222–56. https://doi.org/10.1016/j.enconman.2019.06.076.

    Article  CAS  Google Scholar 

  49. Dehghan M, Vajedi H, Daneshipour M, Pourrajabian A, Rahgozar S, Ilis GG. Pumping power and heat transfer rate of converging microchannel heat sinks: errors associated with the temperature dependency of nanofluids. J Therm Anal Calorim. 2020;140:1267–75. https://doi.org/10.1007/s10973-019-09020-y.

    Article  CAS  Google Scholar 

  50. Ahmed W, Chowdhury ZZ, Kazi SN, Johan M, Akram N, Oon CS, et al. Characteristics investigation on heat transfer growth of sonochemically synthesized ZnO-DW based nanofluids inside square heat exchanger. J Therm Anal Calorim. 2021;144:1517–34. https://doi.org/10.1007/s10973-020-09593-z.

    Article  CAS  Google Scholar 

  51. Basit Shafiq M, Allauddin U, Qaisrani MA, Rehmanur T, Ahmed N, UsmanMushtaq M, et al. Thermal performance enhancement of shell and helical coil heat exchanger using MWCNTs/water nanofluid. J Therm Anal Calorim. 2022;147:12111–26. https://doi.org/10.1007/s10973-022-11405-5.

    Article  CAS  Google Scholar 

  52. Pahlevaninejad N, Rahimi M, Gorzin M. Thermal and hydrodynamic analysis of non-Newtonian nanofluid in wavy microchannel. J Therm Anal Calorim. 2021;143:811–25. https://doi.org/10.1007/s10973-019-09229-x.

    Article  CAS  Google Scholar 

  53. Yusof NLN, Shamsuddin HS, Estellé P, Mohd-Ghazali N. Optimization of a boron nitride nanotubes nanofluid-cooled microchannel heat sink at different concentrations. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11545-8.

    Article  Google Scholar 

  54. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, et al. Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28. https://doi.org/10.1016/j.enconman.2015.05.023.

    Article  CAS  Google Scholar 

  55. Sadeghinezhad E, Togun H, Mehrali M, Sadeghi Nejad P, Tahan Latibari S, Abdulrazzaq T, et al. An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int J Heat Mass Transf. 2015;81:41–51. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.006.

    Article  CAS  Google Scholar 

  56. Goodarzi M, Tlili I, Moria H, Abdullah Alkanhal T, Ellahi R, Anqi AE, et al. Boiling heat transfer characteristics of graphene oxide nanoplatelets nano-suspensions of water-perfluorohexane (C6F14) and water-n-pentane. Alexandria Eng J. 2020;59:4511–21. https://doi.org/10.1016/j.aej.2020.08.003.

    Article  Google Scholar 

  57. Selvam C, Balaji T, Mohan Lal D, Harish S. Convective heat transfer coefficient and pressure drop of water-ethylene glycol mixture with graphene nanoplatelets. Exp Therm Fluid Sci. 2017;80:67–76. https://doi.org/10.1016/j.expthermflusci.2016.08.013.

    Article  CAS  Google Scholar 

  58. Balaji T, Rajendiran S, Selvam C, Lal DM. Enhanced heat transfer characteristics of water based hybrid nanofluids with graphene nanoplatelets and multi walled carbon nanotubes. Powder Technol. 2021;394:1141–57. https://doi.org/10.1016/j.powtec.2021.09.014.

    Article  CAS  Google Scholar 

  59. Wilhelm M, Ludwig T, Fischer T, Yu W, Singh D, Mathur S. Functionalized few-layered graphene nanoplatelets for superior thermal management in heat transfer nanofluids. Int J Appl Ceram Technol. 2022;19:803–12.

    Article  CAS  Google Scholar 

  60. Alawi OA, Sidik NAC, Kazi SN, Najafi G. Graphene nanoplatelets and few-layer graphene studies in thermo-physical properties and particle characterization. J Therm Anal Calorim. 2019;135:1081–93. https://doi.org/10.1007/s10973-018-7585-0.

    Article  CAS  Google Scholar 

  61. Sandhya M, Ramasamy D, Kadirgama K, Harun WSW, Saidur R. Experimental study on properties of hybrid stable & surfactant-free nanofluids GNPs/CNCs (Graphene nanoplatelets/cellulose nanocrystal) in water/ethylene glycol mixture for heat transfer application. J Mol Liq. 2022;348:118019. https://doi.org/10.1016/j.molliq.2021.118019.

    Article  CAS  Google Scholar 

  62. Zhang LF, Zhou J, Zhang CY. PH-controlled growth of ultrathin iron vanadium oxide (FeV3O8) nanoplatelets with high visible-light photo-catalytic activity. J Mater Chem A. 2014;2:14903–7. https://doi.org/10.1039/C4TA03161J.

    Article  CAS  Google Scholar 

  63. Digvijay Satapathy K, Deshmukh K, Basheer Ahamed M, Kumar Sadasivuni K, Ponnamma DK, KhadheerPasha S, et al. High- quality factor poly (vinylidenefluoride) based novel nanocomposites filled with graphene nanoplatelets and vanadium pentoxide for high-Q capacitor applications. Adv Mater Lett. 2017;8:288–94.

    Article  Google Scholar 

  64. Berouaken M, Talbi L, Yaddadene C, Maoudj M, Menari H, Alkama R, et al. Room temperature ammonia gas sensor based on V2O5 nanoplatelets/quartz crystal microbalance. Appl Phys A Mater Sci Process. 2020;126:1–9. https://doi.org/10.1007/s00339-020-04129-6.

    Article  CAS  Google Scholar 

  65. Morad M, Fadlallah MM, Hassan MA, Sheha E. Evaluation of the effect of V2O5 on the electrical and thermoelectric properties of poly(vinyl alcohol)/graphene nanoplatelets nanocomposite. Mater Res Express [Internet] IOP Publ. 2016;3:035015. https://doi.org/10.1088/2053-1591/3/3/035015.

    Article  CAS  Google Scholar 

  66. Lim DG, Zhao Y, Manikandan P, Adams RA, Youngblood JP, Pol VG. Tailored sonochemical synthesis of V2O5 graphene nanoplatelets composites and its enhanced Li-ion insertion properties. Mater Res Bull. 2019;114:37–44.

    Article  CAS  Google Scholar 

  67. Bonso JS, Rahy A, Perera SD, Nour N, Seitz O, Chabal YJ, et al. Exfoliated graphite nanoplatelets-V2O5 nanotube composite electrodes for supercapacitors. J Power Sources. 2012;203:227–32. https://doi.org/10.1016/j.jpowsour.2011.09.084.

    Article  CAS  Google Scholar 

  68. Etman AS, Asfaw HD, Yuan N, Li J, Zhou Z, Peng F, et al. A one-step water based strategy for synthesizing hydrated vanadium pentoxide nanosheets from VO2(B) as free-standing electrodes for lithium battery applications. J Mater Chem A. 2016;4:17988–8001.

    Article  CAS  Google Scholar 

  69. Levi R, Bar-Sadan M, Albu-Yaron A, Popovitz-Biro R, Houben L, Prior Y, et al. Stability criteria of fullerene-like nanoparticles: comparing V2O5 to layered metal dichalcogenides and dihalides. Materials (Basel). 2010;3:4428–45.

    Article  CAS  PubMed  Google Scholar 

  70. Sreejesh M, Shenoy S, Sridharan K, Kufian D, Arof AK, Nagaraja HS. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications. Appl Surf Sci. 2017;410:336–43. https://doi.org/10.1016/j.apsusc.2017.02.246.

    Article  CAS  Google Scholar 

  71. Moretti A, Passerini S. Bilayered nanostructured V2O5·nH2O for metal batteries. Adv Energy Mater. 2016;6:1600868.

    Article  Google Scholar 

  72. Wangoh LW, Huang Y, Jezorek RL, Kehoe AB, Watson GW, Omenya F, et al. Correlating lithium hydroxyl accumulation with capacity retention in V2O5 aerogel cathodes. ACS Appl Mater Interfaces. 2016;8:11532–8.

    Article  CAS  PubMed  Google Scholar 

  73. Legendre JJ, Livage J. Vanadium pentoxide gels: I. structural study by electron diffraction. J Colloid Interface Sci. 1983;94:75–83.

    Article  CAS  Google Scholar 

  74. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50:2272–81.

    Article  CAS  Google Scholar 

  75. Marcy H, Degroot DC, Kannewurfi CR. Conductive Polymer/oxide bronze nanocomposite. Intercalsted polythiophene in V2O5 xerogels. Chem Mater. 1990:222–224. https://doi.org/10.1021/cm00009a005

  76. Liu P, Lee SH, Tracy CE, Yan Y, Turner JA. Preparation and lithium insertion properties of mesoporous vanadium oxide. Adv Mater. 2002;14:27–30.

    Article  CAS  Google Scholar 

  77. Das SK, Choi SUS, Patel HE. Heat transfer in nanofluids—A review. Heat Transf Eng. 2006;27:3–19.

    Article  CAS  Google Scholar 

  78. Chen LM, Lai QY, Hao YJ, Zhao Y, Ji XY. Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes. J Alloys Compd. 2009;467:465–71.

    Article  CAS  Google Scholar 

  79. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  80. Yimin Xuan WR. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.

    Article  Google Scholar 

  81. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci. 2009;33:706–14. https://doi.org/10.1016/j.expthermflusci.2009.01.005.

    Article  CAS  Google Scholar 

  82. Hamilton RL. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  83. Said Z, Sabiha MA, Saidur R, Hepbasli A, Rahim NA, Mekhilef S, et al. Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod. 2015;92:343–53. https://doi.org/10.1016/j.jclepro.2015.01.007.

    Article  CAS  Google Scholar 

  84. Udawattha DS, Narayana M, Wijayarathne UPL. Predicting the effective viscosity of nanofluids based on the rheology of suspensions of solid particles. J King Saud Univ-Sci. 2019;31:412–26. https://doi.org/10.1016/j.jksus.2017.09.016.

    Article  Google Scholar 

  85. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  86. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117.

    Article  Google Scholar 

  87. Ahammed N, Asirvatham LG, Wongwises S. Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger. Exp Therm Fluid Sci. 2016;74:81–90. https://doi.org/10.1016/j.expthermflusci.2015.11.023.

    Article  CAS  Google Scholar 

  88. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60. https://doi.org/10.1016/j.expthermflusci.2011.11.007.

    Article  CAS  Google Scholar 

  89. Steinke ME, Kandlikar SG. Single-phase heat transfer enhancement techniques in microchannel and minichannel flows. Proc Second Int Conf Microchannels Minichannels. 2004;41682:141–8.

    Article  Google Scholar 

  90. Glasgow I, Aubry N. Enhancement of microfluidic mixing using time pulsing. Lab Chip. 2003;3:114–20.

    Article  CAS  PubMed  Google Scholar 

  91. Yuan D, Zhou W, Fu T, Dong Q. Heat transfer performance of a novel microchannel embedded with connected grooves. Chin J Mech Eng. 2021. https://doi.org/10.1186/s10033-021-00632-w.

    Article  Google Scholar 

  92. Hosseinirad E, Khoshvaght-Aliabadi M, Hormozi F. Effects of splitter shape on thermal-hydraulic characteristics of plate-pin-fin heat sink (PPFHS). Int J Heat Mass Transf. 2019;143:118586. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118586.

    Article  Google Scholar 

  93. Khoshvaght-Aliabadi M, Ahmadian E, Sartipzadeh O. Effects of different pin-fin interruptions on performance of a nanofluid-cooled zigzag miniature heat sink (MHS). Int Commun Heat Mass Transf. 2017;81:19–27. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Centre for System Design (CSD) Facility, NITK, Surathkal, for providing required instrumentation for performing the experiments which is highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

GN contributed to conceptualization, methodology, validation, formal analysis, investigation, and writing—original draft. NG performed writing—review and editing, supervision, and project administration. DAP and HSN performed writing—review and editing, and supervision. MS contributed to methodology, formal analysis, and investigation.

Corresponding author

Correspondence to D. Arumuga Perumal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendran, G., Gnanasekaran, N., Perumal, D.A. et al. Integrated microchannel cooling for densely packed electronic components using vanadium pentaoxide (V2O5)-xerogel nanoplatelets-based nanofluids. J Therm Anal Calorim 148, 2547–2565 (2023). https://doi.org/10.1007/s10973-022-11925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11925-0

Keywords

Navigation