Skip to main content
Log in

Flame retardancy and smoke suppression of silicone foams with modified microencapsulated Mg/Zn/Al-layered double hydroxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silicone foams (SiFs) are high-performance materials but can combust and release choking smoke in a fire. In this paper, the modified microencapsulated Mg/Zn/Al-layered double hydroxide (MLDHs) was prepared by the sol–gel method. Then, the structure and performance of modified MLDHs were characterized by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TG), and differential scanning calorimetry (DSC). Besides, the mechanical properties, flame retardancy, smoke suppression, thermal degradation behavior, morphology and composition of carbon slag of SiFs with modified MLDHs were tested using the universal tensile testing machine, limiting oxygen index (LOI), UL-94 test, cone calorimeter, thermogravimetry, SEM–EDS and XPS. The results indicated that the modified MLDHs could effectively improve the ductility of SiFs. When the addition of modified MLDHs exceeded 20 mass%, SiFs could be improved to UL-94-V0 rating. The PHRR, THR, and TSP of SiFs with 30 mass% modified MLDHs were 56.04%, 46.86%, and 80.49% lower than that of pure SiFs. Furthermore, the decomposition products of modified MLDHs/SiFs composite such as SiO2 and zinc magnesium aluminum oxide could improve the char formation significantly. The continuous, complete, and dense structure of carbon slag of modified MLDHs/SiFs could effectively block the exchange of heat and gas on the surface of SiFs and reduce the combustion performance of SiFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pang QT, Kang FR, Deng J, Lei L, Lu J, Shao SY. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam. RSC Adv. 2021;11:13821–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jia D, Yan SP, Peng YQ, Wei LM, Wang LB, Gao Y, Hao ZM, Qiu Y, Wan Q. Constitutive modeling of γ-irradiated silicone rubber foams under compression and shear loading. Polym Degrad Stab. 2021;183(14):10941.

    Google Scholar 

  3. Kang FR, Deng J, Jiao DS, He LQ, Wang WF, Liu ZC. Microfluidic fabrication of polysiloxane/dimethyl methylphosphonate flame retardant microcapsule and its application in silicone foams. Polym Adv Technol. 2019;30(5):1269–78.

    Article  CAS  Google Scholar 

  4. Song JQ, Huang ZX, Qin Y, Yang GY, Wang X. Ceramifiable and mechanical properties of silicone rubber foam composite with frit and high silica glass fiber. IOP Conf Series: Mat Sci Eng. 2018;423(1):012168.

    Article  Google Scholar 

  5. Du W, Yin C, Huang H, Ge X. Vinyl-functionalized polyborosiloxane for improving mechanical and flame-retardancy performances of silicone rubber foam composites. Polym Int. 2022;71(1):124–31.

    Article  CAS  Google Scholar 

  6. Ma L, Liu X, Sheng Y, Guo Y. Flame retardancy of silicone rubber foam containing modified hydrotalcite. J Appl Polym Sci. 2022;139(22):52255.

    Article  CAS  Google Scholar 

  7. Deng SB, Wang L, Yang JC, Cao ZJ, Wang YZ. Flame-retardant and smoke- suppressed silicone foams with chitosan-based nanocoatings. Ind Eng Chem Res. 2016;55:7239–48.

    Article  CAS  Google Scholar 

  8. Hermansson A, Hjertberg T, Sultan B. Distribution of calcium carbonate and silicone elastomer in a flame retardant system based on ethylene-acrylate copolymer, chalk and silicone elastomer and its effect on flame retardant properties. J Appl Polym Sci. 2010;100(3):2085–95.

    Article  Google Scholar 

  9. Chruściel JJ, Leśniak E. Preparation of flexible, self-extinguishing silicone foams. J Appl Polym Sci. 2010;119(3):1696–703.

    Article  Google Scholar 

  10. Kang FR, Wang CP, Deng J, Wang WF, Li XN. Effects of talc/hollow glass beads on the flame retardancy of silicone foams. Mater Res Exp 2019 6(9)

  11. Luo WQ, Li ZM, Luo HH, Liu YT, Xia GJ, Zhu HT, Zhou JY, Yu D, Zhang JX, Song JH, Duan ZZ, Qiao YX, Tang JJ, Wang YX, Meng CF. Preparation of room temperature vulcanized silicone rubber foam with excellent flame retardancy. Scan. 2021.

  12. Deng J, Kang FR, Xiao Y, Shu CM, Wang WF, Laiwang B, Liu ZC. Effects of platinum compounds/superfine aluminum hydroxide/ultrafine calcium carbonate on the flame retardation and smoke suppression of silicone foams, J Appl Polym Sci. 2020;137(1).

  13. Yan W, Yu J, Zhang MQ, Qin SH, Wang T, Huang WJ, Long LJ. Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. Rsc Adv. 2017;7(73):46236–45.

    Article  CAS  Google Scholar 

  14. Qian Y, Zhou SJ, Chen XL. Flammability and thermal degradation behavior of ethylene-vinyl acetate/layered double hydroxides/zinc borate composites. Polym Adv Technol. 2017;28:353–61.

    Article  CAS  Google Scholar 

  15. Wang DY, Das A, Leuteritz A, Mahaling RN, Jehnichen D, Wagenknechtb U, Heinrich G. Structural characteristics and flammability of fire retarding EPDM/layered double hydroxide (LDH) nanocomposites. RSC Adv. 2012;2(9):3927–33.

    Article  CAS  Google Scholar 

  16. Kang NJ, Wang DY, Kutlu B, Zhao PC, Leuteritz A, Wagenknecht U, Heinrich G. A new approach to reducing the flammability of layered double hydroxide (LDH)-based polymer composites: preparation and characterization of dye structure-Intercalated LDH and its effect on the flammability of polypropylene- grafted maleic anhydride/d-LDH composites. Acs Appl Mater Interfaces. 2013;5(18):8991–7.

    Article  CAS  PubMed  Google Scholar 

  17. Xie H, Ye Q, Si JY, Yang W, Lu HD, Zhang QZ. Synthesis of a carbon nanotubes/ZnAl-layered double hydroxide composite as a novel flame retardant for flexible polyurethane foams. Polym Adv Technol. 2016;27(5):651–6.

    Article  CAS  Google Scholar 

  18. Jiao C, Chen X, Zhang J. Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites. J Fire Sci. 2009;27(5):465–79.

    Article  CAS  Google Scholar 

  19. Jiao C, Chen X, Zhang J. Synergistic flame-retardant effects of aluminum oxide with layered double hydroxides in EVA/LDH composites. J Therm Anal Calorim. 2010;98(4):501–12.

    Google Scholar 

  20. Liang S, Zhang L, Chen Z, Feng F. Flame retardant efficiency of melamine pyrophosphate with added Mg-Al-layered double hydroxide in medium density fiberboards. BioResources. 2016;12(1):533–45.

    Article  Google Scholar 

  21. Cai HY, Peng FC, Wang YX, Yi JY, Cai XW, Liu H, Kong QH. Improving flame retardancy of epoxy resin nanocomposites by carbon nanotubes grafted CuAl-layered double hydroxide Hybrid. J Nanosci Nanotechno. 2020;20(10):6406–12.

    Article  CAS  Google Scholar 

  22. Ding YY, Xu L, Hu GS. Performance of halogen-free flame retardant EVA/MH/ LDH composites with nano-LDHs and MH. Chinese Sci Bull. 2011;56(35):3878–83.

    Article  CAS  Google Scholar 

  23. Zhang GB, Ding P, Zhang M, Qu BQ. Synergistic effects of layered double hydroxide with hyperfine magnesium hydroxide in halogen-free flame retardant EVA/HFMH/LDH nanocomposites. Polym Degrad Stab. 2007;92(9):1715–20.

    Article  CAS  Google Scholar 

  24. Kang FR, Wang CP, Deng J, Yang K, Ma L. Flame retardancy and smoke suppression of silicone foams with microcapsulated aluminum hypophosphite and zinc borate. Polym Adv Technol. 2020;31(4):654–64.

    Article  CAS  Google Scholar 

  25. Estevinho BN, Lopes AR, Sousa V, Rocha F, Nunes OC. Microencapsulation of gulosibacter molinativorax ON4T cells by a spray-drying process using different biopolymers. J Hazard Mater. 2017;338:85–92.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang B, Jiang Y, Han J. The core-double-shell microcapsules flame retardant: synthesis and its application for polyvinyl chloride composites. J Phys Chem Solid. 2017;111:391–402.

    Article  CAS  Google Scholar 

  27. Kaufman G, Montejo KA, Michaut A, Majewski PW, Osuji CO. Photoresponsive and magnetoresponsive graphene oxide microcapsules fabricated by droplet microfluidics. ACS Appl Mater Interfaces. 2017;9(50):44192–8.

    Article  CAS  PubMed  Google Scholar 

  28. Tang G, Liu XL, Yang YD, Chen DP, Zhang H, Zhou L, Zhang P, Jiang HH, Deng D. Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams. Adv Powder Technol. 2020;31(4):1420–30.

    Article  CAS  Google Scholar 

  29. Tang G, Liu XL, Zhou L, Zhang P, Deng D, Jiang H. Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams. Adv Powder Technol. 2020;31(1):279–86.

    Article  CAS  Google Scholar 

  30. Ding P, Kang B, Zhang J, Yang J, Song N, Tang S, Shi L. Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. J Colloid Interf Sci. 2015;440:46–52.

    Article  CAS  Google Scholar 

  31. Liu Y, Hu X, Han S, Wang Y, Wu Z, Qian L. The fabrication of phytate and LDH-based hybrid nanosheet towards improved fire safety properties and superior smoke suppression of intumescent flame retardant LDPE. Thermochim Acta. 2022;714:179271.

    Article  CAS  Google Scholar 

  32. Qiu J, Lai X, Li H, Gao J, Zeng X, Liao X. Facile fabrication of a novel polyborosiloxane decorated layered double hydroxide for remarkably reducing fire hazard of silicone rubber. Compos Part B: Eng. 2019;175:107068.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Youth project of National Natural Science Foundation of China (52104219, 51904233); National Natural Science Foundations of China (51774232, 52074218); Preferential funding project for scientific and technological activities of overseas students in Shaanxi Province (2021003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furu Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, F., Deng, J., Pang, Q. et al. Flame retardancy and smoke suppression of silicone foams with modified microencapsulated Mg/Zn/Al-layered double hydroxide. J Therm Anal Calorim 148, 4731–4743 (2023). https://doi.org/10.1007/s10973-022-11901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11901-8

Keywords

Navigation