Skip to main content
Log in

Analysis of thermal performance and ultrasonic wave power variation on heat transfer of heat exchanger in the presence of nanofluid using the artificial neural network: experimental study and model fitting

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study has experimentally and numerically investigated the influence of ultrasonic waves and temperature variations on the heat transfer coefficient (HTC) by using CNT-water nanofluid. According to the test results, applying the ultrasonic waves in two powers of 35–50 W improves the heat transfer coefficient. The heat transfer coefficient is also enhanced with increasing the concentration of the nanofluid and fluid temperature. The Nusselt number also improved by 540.23% with increasing fluid temperature from 25 to 35 °C, the mass fraction from 0.12 to 0.25, the flow rate, and the application of ultrasonic waves. Furthermore, the Artificial Neural Network, ANN, is used to evaluate the heat transfer coefficient and Nusselt number. The employed ANNs have the feed-forward architecture with hidden “tansig” and output “purelin” neurons. The training method for this network is the backpropagation. Different number of hidden layer neurons as well as dissimilar training method are investigated to find the best ANN performance. Examining the results, it can be seen that the best combination for the present problem is an ANN with 15 hidden neurons and a “trainbr” training algorithm. Comparing the experimental and ANN results reveals an excellent consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

m m :

Mass flow rate (kg sec−1)

Q:

Heat transfer (J)

m v :

Volume flow rate (m3 min−1)

T f :

Fluid temperature (K)

Cp:

Specific heat capacity (J kg K−1)

T s :

Surface temperature (K)

LMTD:

Mean logarithmic temperature difference (K)

L H :

Length of the heat exchanger (m)

D h :

Hydraulic diameter (m)

A H :

Internal surface area of the heat exchanger (m2)

b:

Inner height of heat exchanger cross section (m)

a:

Inner width of heat exchanger cross section (m)

k:

Thermal conductivity coefficient (W m−1 K)

h:

Convection heat transfer coefficient (W m−2 K)

Re:

Reynolds number

p:

Power (W)

Nu:

Nusselt number

φ :

Mass fraction (%)

ρ :

Density (kg m−3)

i:

Inlet

avg:

Average

o:

Outlet

nf:

Nanofluid

U:

Applying ultrasonic waves

w:

Water

s:

Sonication

H:

Heater

I:

Without ultrasonic waves

References

  1. Liu W, Yang Z, Zhang B, Lv P. Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow. Int J Heat Mass Transf. 2017;115:169–79. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.025.

    Article  Google Scholar 

  2. Singh SP, Verma AK, Jaiswal AK, Singh D, Yadav RR. Study of ultrasonic and thermal properties for heat transfer enhancement in Fe2O3 nanoparticles-ethylene glycol nanofluids. Int J Thermophys. 2021;42:60. https://doi.org/10.1007/s10765-021-02809-w.

    Article  CAS  Google Scholar 

  3. Hassen W, Kolsi L, Mohammed HA, Ghachem K, Sheikholeslami M, Almeshaal MA. Transient electrohydrodynamic convective flow and heat transfer of MWCNT: dielectric nanofluid in a heated enclosure. Phys Lett A. 2020;384(28):126736. https://doi.org/10.1016/j.physleta.2020.126736.

    Article  CAS  Google Scholar 

  4. Masoud Hosseini S, Safaei MR, Estellé P, HadiJafarnia S. Heat transfer of water-based carbon nanotube nanofluids in the shell and tube cooling heat exchangers of the gasoline product of the residue fluid catalytic cracking unit. J Therm Anal Calorim. 2020;140(1):351–62. https://doi.org/10.1007/s10973-019-08813-5.

    Article  CAS  Google Scholar 

  5. Moradi A, Toghraie D, Isfahani AHM, Hosseinian A. An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J Therm Anal Calorim. 2019;137(5):1797–807. https://doi.org/10.1007/s10973-019-08076-0.

    Article  CAS  Google Scholar 

  6. Sokhal GS, Dhindsa GS, Sokhal KS, Ghazvini M, Sharifpur M, Sadeghzadeh M. Experimental investigation of heat transfer and exergy loss in heat exchanger with air bubble injection technique. J Therm Anal Calorim. 2021;145(3):727–37. https://doi.org/10.1007/s10973-020-10192-1.

    Article  CAS  Google Scholar 

  7. Moghaddaszadeh N, Esfahani JA, Mahian O. Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids. J Therm Anal Calorim. 2019;137(3):865–77. https://doi.org/10.1007/s10973-019-08009-x.

    Article  CAS  Google Scholar 

  8. Zhang H, Qing S, Zhai Y, Zhang X, Zhang A. The changes induced by pH in TiO2/water nanofluids: stability, thermophysical properties and thermal performance. Powder Technol. 2021;377:748–59. https://doi.org/10.1016/j.powtec.2020.09.004.

    Article  CAS  Google Scholar 

  9. Czwielong F, Hruška V, Bednařík M, Becker S. On the acoustic effects of sonic crystals in heat exchanger arrangements. Appl Acoust. 2021;182:108253. https://doi.org/10.1016/j.apacoust.2021.108253.

    Article  Google Scholar 

  10. Xian HW, Sidik NAC, Saidur R. Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int Commun Heat Mass Transfer. 2020;110:104389. https://doi.org/10.1016/j.icheatmasstransfer.2019.104389.

    Article  CAS  Google Scholar 

  11. Geng S, Chen Y, Zhao Y, Ma C. Experimental study on antifouling performance of ultrasonic/electronic compound treatment in heat transfer. Exp Heat Transf. 2021;34(7):605–19. https://doi.org/10.1080/08916152.2020.1797929.

    Article  CAS  Google Scholar 

  12. Setareh M, Saffar-Avval M, Abdullah A. Heat transfer enhancement in an annulus under ultrasound field: a numerical and experimental study. Int Commun Heat Mass Trans. 2020;114:104560. https://doi.org/10.1016/j.icheatmasstransfer.2020.104560.

    Article  Google Scholar 

  13. AmiriDelouei A, Sajjadi H, Mohebbi R, Izadi M. Experimental study on inlet turbulent flow under ultrasonic vibration: pressure drop and heat transfer enhancement. Ultrason Sonochem. 2019;51:151–9. https://doi.org/10.1016/j.ultsonch.2018.10.032.

    Article  CAS  Google Scholar 

  14. Azimy H, Meghdadi Isfahani AH, Farahnakian M, Karimipour A. Experimental investigation of the effectiveness of ultrasounds on increasing heat transfer coefficient of heat exchangers. Int Commun Heat Mass Transf. 2021;127:105575. https://doi.org/10.1016/j.icheatmasstransfer.2021.105575.

    Article  Google Scholar 

  15. Azimy H, Meghdadi Isfahani AH, Farahnakian M. Investigation of the effect of ultrasonic waves on heat transfer and nanofluid stability of MWCNTs in sono heat exchanger: an experimental study. Heat Mass Transf. 2021. https://doi.org/10.1007/s00231-021-03126-6.

    Article  Google Scholar 

  16. Khooshechin M, Fathi S, Salimi F, Ovaysi S. The influence of surfactant and ultrasonic processing on improvement of stability and heat transfer coefficient of CuO nanoparticles in the pool boiling. Int J Heat Mass Transf. 2020;154:119783. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119783.

    Article  CAS  Google Scholar 

  17. Lee D, Lee N, Hsu W-T, Yun M, Cho HH. Enhanced boiling heat transfer on micro-structured surfaces via ultrasonic actuation. Int Commun Heat Mass Transf. 2020;113:104512. https://doi.org/10.1016/j.icheatmasstransfer.2020.104512.

    Article  Google Scholar 

  18. Arya A, Sarafraz MM, Shahmiri S, Madani SAH, Nikkhah V, Nakhjavani SM. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater. Heat Mass Transf. 2018;54(4):985–97. https://doi.org/10.1007/s00231-017-2201-6.

    Article  CAS  Google Scholar 

  19. Tam HK, Tam LM, Ghajar AJ, Chen IP. Experimental study of the ultrasonic effect on heat transfer inside a horizontal mini-tube in the laminar region. Appl Therm Eng. 2017;114:1300–8. https://doi.org/10.1016/j.applthermaleng.2016.09.166.

    Article  CAS  Google Scholar 

  20. Rahimi M, Abolhasani M, Azimi N. High frequency ultrasound penetration through concentric tubes: illustrating cooling effects and cavitation intensity. Heat Mass Transf. 2015;51(4):587–99. https://doi.org/10.1007/s00231-014-1435-9.

    Article  Google Scholar 

  21. Szadzińska J, Łechtańska J, Kowalski SJ, Stasiak M. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrason Sonochem. 2017;34:531–9. https://doi.org/10.1016/j.ultsonch.2016.06.030.

    Article  CAS  PubMed  Google Scholar 

  22. Yao Y. Research and applications of ultrasound in HVAC field: a review. Renew Sustain Energy Rev. 2016;58:52–68. https://doi.org/10.1016/j.rser.2015.12.222.

    Article  Google Scholar 

  23. Song J, Tian W, Xu X, Wang Y, Li Z. Thermal performance of a novel ultrasonic evaporator based on machine learning algorithms. Appl Therm Eng. 2019;148:438–46. https://doi.org/10.1016/j.applthermaleng.2018.11.083.

    Article  Google Scholar 

  24. Legay M, Bulliard-Sauret O, Ferrouillat S, Boldo P, Gondrexon N. Methods to evaluate heat transfer enhancement in an ultrasonic heat exchanger. Heat Transfer Eng. 2020;41(17):1457–72. https://doi.org/10.1080/01457632.2019.1649917.

    Article  CAS  Google Scholar 

  25. Legay M, Gondrexon N, Le Person S, Boldo P, Bontemps A. Enhancement of heat transfer by ultrasound: review and recent advances. Int J Chem Eng. 2011;2011:670108. https://doi.org/10.1155/2011/670108.

    Article  Google Scholar 

  26. Berber A, Gürdal M, Bağırsakçı K. Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network. Exp Heat Transf. 2021;34(6):547–63. https://doi.org/10.1080/08916152.2020.1793826.

    Article  CAS  Google Scholar 

  27. Elsheikh AH, Sharshir SW, Ismail AS, Sathyamurthy R, Abdelhamid T, Edreis EMA, Kabeel AE, Haiou Z. An artificial neural network based approach for prediction the thermal conductivity of nanofluids. SN Appl Sci. 2020;2(2):235. https://doi.org/10.1007/s42452-019-1610-1.

    Article  CAS  Google Scholar 

  28. Qiu Y, Garg D, Zhou L, Kharangate CR, Kim S-M, Mudawar I. An artificial neural network model to predict mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data. Int J Heat Mass Transf. 2020;149:119211. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119211.

    Article  Google Scholar 

  29. Wang X, Yan X, Gao N, Chen G. Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network. J Therm Sci. 2020;29(6):1504–12. https://doi.org/10.1007/s11630-019-1158-9.

    Article  CAS  Google Scholar 

  30. Maddah H, Ghasemi N. Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks. Heat Mass Transf. 2017;53(12):3459–72. https://doi.org/10.1007/s00231-017-2068-6.

    Article  CAS  Google Scholar 

  31. Komeilibirjandi A, Raffiee AH, Maleki A, AlhuyiNazari M, SafdariShadloo M. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2020;139(4):2679–89. https://doi.org/10.1007/s10973-019-08838-w.

    Article  CAS  Google Scholar 

  32. Kim HY, Kim YG, Kang BH. Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration. In: Heat transfer summer conference, 2003. pp. 295–302

  33. Fuchs FJ. Ultrasonic cleaning, fundamental theory and application. In: NASA conference publication, 1995. NASA, pp. 369–369

  34. Yao Y, Zhang X, Guo Y. Experimental study on heat transfer enhancement of water-water shell-and-tube heat exchanger assisted by power ultrasonic. International refrigeration and air conditioning conference, 2010; Paper 1110.

Download references

Author information

Authors and Affiliations

Authors

Contributions

HA: Data curation, Visualization, Writing – original draft. NA: Writing – original draft, Data curation. AHMI: Methodology, Investigation, Conceptualization, Supervision. SAB: Software. Masoud Farahnakian: Formal analysis.

Corresponding author

Correspondence to Amir Homayoon Meghdadi Isfahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimy, H., Azimy, N., Meghdadi Isfahani, A.H. et al. Analysis of thermal performance and ultrasonic wave power variation on heat transfer of heat exchanger in the presence of nanofluid using the artificial neural network: experimental study and model fitting. J Therm Anal Calorim 148, 8009–8023 (2023). https://doi.org/10.1007/s10973-022-11827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11827-1

Keywords

Navigation