Skip to main content
Log in

Vaporization thermodynamics of normal alkyl benzoates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The compounds of the homologous series of n-alkyl benzoates (PhCOO-n-CnH2n+1) have a number of important applications. As for many low-volatile compounds, a few data on the vaporization thermodynamics of this class of compounds are available. Here we systemized and critically analyzed the available information on vapor pressures and vaporization enthalpies of short linear alkyl benzoates from methyl to pentyl and complemented these data by additional experimental investigation of long-chained compounds: the heat capacities and vapor pressures of pentadecyl, hexadecyl and heptadecyl benzoates were measured for the first time between 340 and 490 K using DSC and TG-FSC. Based on the experimental data and empirical approaches, we completely described the vaporization thermodynamics of a series of alkyl benzoates from methyl to eicosyl and established the correlation of some properties with the chain length. A way to predict the vaporization enthalpies and vapor pressures inside the homologous series in a wide temperature range was proposed and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Farhi M, Dudareva N, Masci T, Weiss D, Vainstein A, Abeliovich H. Synthesis of the food flavoring methyl benzoate by genetically engineered Saccharomyces cerevisiae. J Biotechnol. 2006;122(3):307–15.

    Article  CAS  Google Scholar 

  2. Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler D, et al. Safety assessment of alkyl benzoates as used in cosmetics. Int J Toxicol. 2012;31(6_suppl):342S-S372.

    Article  Google Scholar 

  3. Feng Y, Zhang A. A floral fragrance, methyl benzoate, is an efficient green pesticide. Sci Rep. 2017;7(1):1–9.

    Google Scholar 

  4. Mostafiz MM, Shim JK, Hwang HS, Bunch H, Lee KY. Acaricidal effects of methyl benzoate against Tetranychus urticae Koch (Acari: Tetranychidae) on common crop plants. Pest Manag Sci. 2020;76(7):2347–54.

    Article  CAS  Google Scholar 

  5. Morrison WR, Larson NL, Brabec D, Zhang A. Methyl benzoate as a putative alternative, environmentally friendly fumigant for the control of stored product insects. J Econ Entomol. 2019;112(5):2458–68.

    Article  Google Scholar 

  6. Feng Y, Chen J, Zhang A. Commercially available natural benzyl esters and their synthetic analogs exhibit different toxicities against insect pests. Sci Rep. 2018;8(1):1–9.

    Article  Google Scholar 

  7. Santaladchaiyakit Y, Srijaranai S. Alternative solvent-based methyl benzoate vortex-assisted dispersive liquid–liquid microextraction for the high-performance liquid chromatographic determination of benzimidazole fungicides in environmental water samples. J Sep Sci. 2014;37(22):3354–61.

    Article  CAS  Google Scholar 

  8. Arrieta-Escobar JA, Bernardo FP, Orjuela A, Camargo M, Morel L. An integrated methodology for emulsified cosmetic product formulation using integer programming with logical constraints. In: Montastruc L, Negny S, editors. Computer aided chemical engineering. Amsterdam: Elsevier; 2017. p. 985–90.

    Google Scholar 

  9. Bogacki JP, Marcinowski P, Naumczyk J, Wiliński P. Cosmetic wastewater treatment using dissolved air flotation. Arch Environ Prot. 2017;43(2):65–73.

    Article  Google Scholar 

  10. Hirama M, Shimizu M. Oxidation of benzyl ether to benzoate by ozone. Synth Commun. 1983;13(9):781–6.

    Article  CAS  Google Scholar 

  11. Guo Q, Miyaji T, Gao G, Hara R, Takahashi T. Catalytic C–O bond cleavage of ethers using group 5 or 6 metal halide/acid chloride systems. Chem Commun. 2001;11:1018–9.

    Article  Google Scholar 

  12. Brandänge S, Leijonmarck H, Minassie T. Synthesis of esters from silyl ethers and acyl chlorides: catalysis by quaternary ammonium chlorides. Acta Chem Scand. 1997;51:953–7.

    Article  Google Scholar 

  13. Tamura M, Siddiki SH, Shimizu K. CeO2 as a versatile and reusable catalyst for transesterification of esters with alcohols under solvent-free conditions. Green Chem. 2013;15(6):1641–6.

    Article  CAS  Google Scholar 

  14. Dykyj J, Svoboda J, Wilhoit R, Frenkel M, Hall K. Vapor pressure and antoine constants for oxygen containing organic compounds. Berlin: Springer; 2000.

    Google Scholar 

  15. Stephenson RM, Malanowski S. Vapor–liquid critical constants of fluids. In: Stephenson RM, Malanowski S, editors. Handbook of the thermodynamics of organic compounds. Dordrecht: Springer; 1987. p. 527–8.

    Chapter  Google Scholar 

  16. Katayama H. Vapor pressures of methyl, ethyl, n-propyl, isobutyl, and n-butyl benzoates at reduced pressures. J Chem Eng Data. 1988;33(2):75–7.

    Article  CAS  Google Scholar 

  17. Stull DR. Vapor pressure of pure substances. Organic and inorganic compounds. J Ind Eng Chem. 1947;39(4):517–40.

    Article  CAS  Google Scholar 

  18. Steele W, Chirico R, Cowell A, Knipmeyer S, Nguyen A. Thermodynamic properties and ideal-gas enthalpies of formation for methyl benzoate, ethyl benzoate,(R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and diethylene glycol. J Chem Eng Data. 2002;47(4):667–88.

    Article  CAS  Google Scholar 

  19. Vasiltsova TV, Verevkin SP, Bich E, Heintz A, Bogel-Lukasik R, Domańska U. Thermodynamic properties of mixtures containing ionic liquids. 7. Activity coefficients of aliphatic and aromatic esters and benzylamine in 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl) imide using the transpiration method. J Chem Eng Data. 2006;51(1):213–8.

    Article  CAS  Google Scholar 

  20. Baldt J, Hall Jr HKK. Thermochemistry of strained-ring bridgehead nitriles and esters. J Am Chem Soc. 1971;93(1):140–5.

    Article  CAS  Google Scholar 

  21. Dreisbach R, Shrader S. Vapor pressure–temperature data on some organic compounds. J Ind Eng Chem. 1949;41(12):2879–80.

    Article  CAS  Google Scholar 

  22. Reaxys, Elseiver; 2021. www.reaxys.com.

  23. Solomonov BN, Yagofarov MI. An approach for the calculation of vaporization enthalpies of aromatic and heteroaromatic compounds at 298.15 K applicable to supercooled liquids. J Mol Liq. 2020;319:114330. https://doi.org/10.1016/j.molliq.2020.114330.

    Article  CAS  Google Scholar 

  24. Solomonov BN, Varfolomeev MA, Nagrimanov RN, Novikov VB, Buzyurov AV, Fedorova YV, et al. New method for determination of vaporization and sublimation enthalpy of aromatic compounds at 298.15K using solution calorimetry technique and group-additivity scheme. Thermochim Acta. 2015;622:88–96. https://doi.org/10.1016/j.tca.2015.09.022.

    Article  CAS  Google Scholar 

  25. Domalski ES, Hearing ED. Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K. J Phys Chem Ref Data. 1993;22(4):805–1159. https://doi.org/10.1063/1.555927.

    Article  CAS  Google Scholar 

  26. Benson SW, Cruickshank FR, Golden DM, Haugen GR, O’Neal HE, Rodgers AS, et al. Additivity rules for the estimation of thermochemical properties. Chem Rev. 1969;69(3):279–324.

    Article  CAS  Google Scholar 

  27. Santos RC, Leal JP. A review on prediction methods for molar enthalpies of vaporization of hydrocarbons: the ELBA method as the best answer. J Phys Chem Ref Data. 2012;41(4):043101. https://doi.org/10.1063/1.4754596.

    Article  CAS  Google Scholar 

  28. Kolská Z, Růžička V, Gani R. Estimation of the enthalpy of vaporization and the entropy of vaporization for pure organic compounds at 298.15 K and at normal boiling temperature by a group contribution method. Ind Eng Chem. 2005;44(22):8436–54.

    Article  Google Scholar 

  29. Naef R, Acree WE Jr. Calculation of the vapour pressure of organic molecules by means of a group-additivity method and their resultant Gibbs free energy and entropy of vaporization at 298.15 K. Molecules. 2021;26(4):1045.

    Article  CAS  Google Scholar 

  30. Tu C-H. Group-contribution method for the estimation of vapor pressures. Fluid Phase Equilib. 1994;99:105–20.

    Article  CAS  Google Scholar 

  31. Ruzicka V Jr. Estimation of vapor pressures by a group-contribution method. Ind Eng Chem Fundam. 1983;22(2):266–7.

    Article  CAS  Google Scholar 

  32. Macknick A, Prausnitz J. Vapor pressures of heavy liquid hydrocarbons by a group-contribution method. Ind Eng Chem Fundam. 1979;18(4):348–51.

    Article  CAS  Google Scholar 

  33. Chickos JS, Hosseini S, Liebman JF. A group additivity approach for the estimation of vapor pressures of liquid hydrocarbons from 298 to 500 K. J Org Chem. 1993;58(20):5345–50.

    Article  CAS  Google Scholar 

  34. Chickos JS, Hesse DG, Liebman JF. A group additivity approach for the estimation of heat capacities of organic liquids and solids at 298 K. J Struct Chem. 1993;4(4):261–9.

    Article  CAS  Google Scholar 

  35. Vetere A. Methods to predict the vaporization enthalpies at the normal boiling temperature of pure compounds revisited. Fluid Phase Equilib. 1995;106(1–2):1–10.

    Article  CAS  Google Scholar 

  36. Abdi S, Movagharnejad K, Ghasemitabar H. Estimation of the enthalpy of vaporization at normal boiling temperature of organic compounds by a new group contribution method. Fluid Phase Equilib. 2018;473:166–74.

    Article  CAS  Google Scholar 

  37. Benkouider AM, Kessas R, Guella S, Yahiaoui A, Bagui F. Estimation of the enthalpy of vaporization of organic components as a function of temperature using a new group contribution method. J Mol Liq. 2014;194:48–56. https://doi.org/10.1016/j.molliq.2014.01.006.

    Article  CAS  Google Scholar 

  38. Van Speybroeck V, Gani R, Meier RJ. The calculation of thermodynamic properties of molecules. Chem Soc Rev. 2010;39(5):1764–79.

    Article  Google Scholar 

  39. Verevkin SP, Emel’yanenko VN, Diky V, Muzny CD, Chirico RD, Frenkel M. New group-contribution approach to thermochemical properties of organic compounds: hydrocarbons and oxygen-containing compounds. J Phys Chem Ref Data. 2013;42(3):033102. https://doi.org/10.1063/1.4815957.

    Article  CAS  Google Scholar 

  40. Solomonov BN, Yagofarov MI, Nagrimanov RN. Additivity of vaporization enthalpy: group and molecular contributions exemplified by alkylaromatic compounds and their derivatives. J Mol Liq. 2021;342:117472. https://doi.org/10.1016/j.molliq.2021.117472.

    Article  CAS  Google Scholar 

  41. Samarov AA, Nazmutdinov AG, Verevkin SP. Vapour pressures and enthalpies of vaporization of aliphatic esters. Fluid Phase Equilib. 2012;334:70–5.

    Article  CAS  Google Scholar 

  42. Yagofarov MI, Sokolov AA, Bolmatenkov DN, Solomonov BN. Relationship between the difference between liquid and ideal gas heat capacities of normal and branched alkanes and the vaporization enthalpies and its prediction as a function of temperature. J Chem Thermodyn. 2021. https://doi.org/10.1016/j.jct.2021.106586.

    Article  Google Scholar 

  43. Yagofarov MI, Bolmatenkov DN, Solomonov BN. Relationship between the vaporization enthalpies of aromatic compounds and the difference between liquid and ideal gas heat capacities. J Chem Thermodyn. 2021;158:106443. https://doi.org/10.1016/j.jct.2021.106443.

    Article  CAS  Google Scholar 

  44. Sokolov AA, Bolmatenkov DN, Yagofarov MI, Balakhontsev IS, Solomonov BN. Estimation of the temperature dependence of the vaporization enthalpies of monofunctional aliphatic hydrocarbons. Fluid Phase Equilib. 2022. https://doi.org/10.1016/j.fluid.2021.113304.

    Article  Google Scholar 

  45. Bolmatenkov DN, Yagofarov MI, Notfullin AA, Solomonov BN. Calculation of the vaporization enthalpies of alkylaromatic hydrocarbons as a function of temperature from their molecular structure. Fluid Phase Equilib. 2021. https://doi.org/10.1016/j.fluid.2021.113303.

    Article  Google Scholar 

  46. Nagrimanov RN, Samatov AA, Solomonov BN. Additive scheme of solvation enthalpy for linear, cyclic and branched-chain aliphatic compounds at 298.15 K. J Mol Liq. 2019;292:111365. https://doi.org/10.1016/j.molliq.2019.111365.

    Article  CAS  Google Scholar 

  47. Solomonov BN, Nagrimanov RN, Mukhametzyanov TA. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15K. Thermochim Acta. 2016;633:37–47. https://doi.org/10.1016/j.tca.2016.03.031.

    Article  CAS  Google Scholar 

  48. Costa JC, Mendes A, Santos LM. Chain length dependence of the thermodynamic properties of n-alkanes and their monosubstituted derivatives. J Chem Eng Data. 2018;63(1):1–20.

    Article  CAS  Google Scholar 

  49. Zaitsau DH, Pimerzin AA, Verevkin SP. Fatty acids methyl esters: complementary measurements and comprehensive analysis of vaporization thermodynamics. J Chem Thermodyn. 2019;132:322–40.

    Article  CAS  Google Scholar 

  50. Ruzicka K, Majer V. Simultaneous treatment of vapor pressures and related thermal data between the triple and normal boiling temperatures for n-alkanes C5–C20. J Phys Chem Ref Data. 1994;23(1):1–39.

    Article  CAS  Google Scholar 

  51. Abreu MF, Salvador VT, Vitorazi L, Gatts CE, dos Santos DR, Giacomini R, et al. Tuning methyl 4, 6-O-benzylidene α-d-glucopyranosides’ gelation ability by minor group modifications. Carbohydr Res. 2012;353:69–78.

    Article  CAS  Google Scholar 

  52. Ooi Y-H, Yeap G-Y, Takeuchi D. Synthesis, mesomorphic properties and structural studies on 1, 3, 5-trisubstituted benzene-based star-shaped derivatives containing Schiff base ester as the peripheral arm. J Mol Struct. 2013;1051:361–75.

    Article  CAS  Google Scholar 

  53. Breusch, Baykut. Istanbul Universitesi Fen Fakultesi Mecmuasi, Seri C: [Astronomi-Fizik-Kimya]. 1961;26(1):6–11.

  54. Buzyurov AV, Nagrimanov RN, Zaitsau DH, Mukhametzyanov TA, Solomonov BN, Abdelaziz A, et al. Application of the Flash DSC 1 and 2+ for vapor pressure determination above solids and liquids. Thermochim Acta. 2021;706:179067. https://doi.org/10.1016/j.tca.2021.179067.

    Article  CAS  Google Scholar 

  55. Boller A, Wiedemann H. Vapor pressure determination by pressure DSC. J Therm Anal Calorim. 1998;53(2):431–9.

    Article  CAS  Google Scholar 

  56. Yagofarov MI, Lapuk SE, Mukhametzyanov TA, Ziganshin MA, Schick C, Solomonov BN. Application of fast scanning calorimetry to the fusion thermochemistry of low-molecular-weight organic compounds: fast-crystallizing m-terphenyl heat capacities in a deeply supercooled liquid state. Thermochim Acta. 2018;668:96–102. https://doi.org/10.1016/j.tca.2018.08.015.

    Article  CAS  Google Scholar 

  57. Bolmatenkov DN, Yagofarov MI, Mukhametzyanov TA, Ziganshin MA, Solomonov BN. The fusion thermochemistry of rubrene and 9,10-diphenylanthracene between 298 and 650 K: fast scanning and solution calorimetry. Thermochim Acta. 2020;693:178778. https://doi.org/10.1016/j.tca.2020.178778.

    Article  CAS  Google Scholar 

  58. Fuller EN, Schettler PD, Giddings JC. New method for prediction of binary gas-phase diffusion coefficients. J Ind Eng Chem. 1966;58(5):18–27. https://doi.org/10.1021/ie50677a007.

    Article  CAS  Google Scholar 

  59. Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. New York: McGraw-Hill Inc; 1987.

    Google Scholar 

  60. Cebe P, Thomas D, Merfeld J, Partlow BP, Kaplan DL, Alamo RG, et al. Heat of fusion of polymer crystals by fast scanning calorimetry. Polymer. 2017;126:240–7.

    Article  CAS  Google Scholar 

  61. Clarke E, Glew D. Evaluation of thermodynamic functions from equilibrium constants. Trans Faraday Soc. 1966;62:539–47.

    Article  CAS  Google Scholar 

  62. Standards NIo, Technology. Thermophysical properties of fluid systems. NIST Standard Reference Data; 2016. https://webbook.nist.gov/chemistry/fluid/.

  63. Majer V, Svoboda V. Enthalpies of vaporization of organic compounds: a critical review and data compilation. 1986.

  64. Chickos JS, Hosseini S, Hesse DG, Liebman JF. Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids. J Struct Chem. 1993;4(4):271–8.

    Article  CAS  Google Scholar 

  65. Maksimuk YV, Kabo GJ, Simirsky VV, Kozyro AA, Sevruk VM. Standard enthalpies of formation of some methyl esters of benzene carboxylic acids. J Chem Eng Data. 1998;43(3):293–8.

    Article  CAS  Google Scholar 

  66. Burgess D. NIST chemistry WebBook. NIST Stand Ref Database. 2016;69:20899.

    Google Scholar 

  67. Milwaukee W. Catalog handbook of fine chemicals. St. Louis: Aldrich Chemical Company; 1990. p. 971.

    Google Scholar 

  68. Weast RC, Grasselli JG. Handbook of data on organic compounds. Boca Raton: CRC Press; 1989.

    Google Scholar 

  69. Buckingham J. Dictionary of organic compounds. Boca Raton: CRC Press; 1996.

    Google Scholar 

  70. Lecat M. Azeotropes of ethyl urethane and other azeotropes. CR Hebd Seances Acad Sci. 1943;217:273.

    Google Scholar 

  71. Timmermans M. Travaux du bureau international d’étalons physico-chimiques-IX. Etude des Constantes physiques de vingt composés organiques. J Chim Phys. 1955;52:223–45.

    Article  CAS  Google Scholar 

  72. Lecat M. New binary azeotropes (Fifth list). Recl Trav Chim Pays Bas. 1927;46:240–7.

    Article  CAS  Google Scholar 

  73. Perkin WH. LXIX—On magnetic rotatory power, especially of aromatic compounds. J Chem Soc Chem Commun Trans. 1896;69:1025–257.

    CAS  Google Scholar 

  74. Colomina M, Laynez J, Perez-Ossorio R, Turrion C. Enthalpies of combustion and formation of six methyl esters of benzene carboxylic acids. J Chem Thermodyn. 1972;4(3):499–506.

    Article  CAS  Google Scholar 

  75. Kusano K, Wadsö I. Enthalpy of vaporization of some organic substances at 25.0 C and test of calorimeter. Bull Chem Soc Jpn. 1971;44(6):1705–7.

    Article  CAS  Google Scholar 

  76. Chickos JS, Hosseini S, Hesse DG. Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times. Thermochim Acta. 1995;249:41–62.

    Article  CAS  Google Scholar 

  77. Guthrie JP, Cullimore PA. Effect of the acyl substituent on the equilibrium constant for hydration of esters. Can J Chem. 1980;58(13):1281–94.

    Article  CAS  Google Scholar 

  78. Gilman H, Hoyle RE. A new method for the introduction of an ethyl group. The reaction between organomagnesium halides and diethyl sulfate. J Am Chem Soc. 1922;44(11):2621–6.

    Article  CAS  Google Scholar 

  79. Kendall J, Wright AH. The viscosity of liquids. IV. Ideal mixtures of the types ether–ether and ester–ester. J Am Chem Soc. 1920;42(9):1776–84.

    Article  CAS  Google Scholar 

  80. Timmermans J. Researches on the freezing point of organic liquid compounds. Bull soc chim Belg. 1911;25:300.

    Google Scholar 

  81. Buckingham J, Donaghy S. Dictionary of organic compound. 5th ed. London: Chaman and Hall; 1987.

    Google Scholar 

  82. Hajipour A, Mazloumi G. An efficient and simple procedure for preparation of esters and anhydrides from acid chlorides in the presence of 1, 4-diazabicyclo [2.2. 2] octane (DABCO) under solvent-free conditions. Synth Commun. 2002;32(1):23–30.

    Article  CAS  Google Scholar 

  83. Hickman K, Weyerts W. The vacuum fractionation of phlegmatic liquids. J Am Chem Soc. 1930;52(12):4714–28.

    Article  CAS  Google Scholar 

  84. Timmermans J. The freezing points of organic substances IV. New exp. determinations. Bull Soc Chim Belg. 1921;30:62–85.

    CAS  Google Scholar 

  85. Uchiyama H, Woo RA-M, DuVal DL, Reece S, Inventors. Compositions comprising cyclodextrin patent US2005/148544. 2005.

  86. Zaki. Benzoic esters and electronic affinities of radicals. Part I. J Chem Soc Chem Commun. 1928. https://doi.org/10.1039/jr9280000983.

    Article  Google Scholar 

  87. Blaise P. Ann Chim (Cachan, France). 1912;25(8):257.

  88. Post HW. The reaction of benzoyl chloride with certain aliphatic ortho esters and acetals. J Org Chem. 1936;1(3):231–5. https://doi.org/10.1021/jo01232a001.

    Article  CAS  Google Scholar 

  89. Rajyam B, Murty CRK. Study of dielectric relaxation and measurement of dipole moments of esters. IV. Amyl esters. Indian J Pure Appl Phys. 1974;12:697–700.

    CAS  Google Scholar 

  90. Barry J, Bram G, Decodts G, Loupy A, Orange C, et al. Solid–liquid phase-transfer catalysis without added solvent. A simple, efficient, and inexpensive synthesis of aromatic carboxylic esters by alkylation of potassium carboxylates. Synthesis. 1985;1:40–5. https://doi.org/10.1055/s-1985-31098.

    Article  Google Scholar 

  91. Pfeiffer G. Journal fur praktische Chemie (Leipzig 1954). 1933;136(2):309.

  92. Stein SE. Application of additive estimation methods to vaporization properties of liquids. n-Alkanes. J Chem Soc Chem Commun Faraday Trans 1 Phys Chem Condense Phases. 1981;77(7):1457–67.

    CAS  Google Scholar 

  93. Yagofarov MI, Solomonov BN. Calculation of the fusion enthalpy temperature dependence of polyaromatic hydrocarbons from the molecular structure: old and new approaches. J Chem Thermodyn. 2021;152:106278. https://doi.org/10.1016/j.jct.2020.106278.

    Article  CAS  Google Scholar 

  94. Shekarriz M, Taghipoor S, Khalili AA, Jamarani MS. Esterification of carboxylic acids with alcohols under microwave irradiation in the presence of zinc triflate. J Chem Res. 2003;2003(3):172–3.

    Article  Google Scholar 

  95. Satam JR, Gawande MB, Deshpande SS, Jayaram RV. SO4 2/SnO2: efficient, chemoselective, and reusable catalyst for acylation of alcohols, phenols, and amines at room temperature. Synth Commun. 2007;37(17):3011–20.

    Article  CAS  Google Scholar 

  96. Li T-S, Li A-X. Montmorillonite clay catalysis. Part 10.1 K-10 and KSF-catalysed acylation of alcohols, phenols, thiols and amines: scope and limitation. J Chem Soc Chem Commun Perkin Trans 1. 1998;12:1913–8.

    Google Scholar 

  97. Zincke. Justus Liebigs Annalen der Chemie. 1869;152:2.

  98. Frentzel. Chemische Berichte. 1883;16:744.

  99. Byrd JN, Bartlett RJ, Montgomery JA Jr. At what chain length do unbranched alkanes prefer folded conformations? J Phys Chem A. 2014;118(9):1706–12.

    Article  CAS  Google Scholar 

  100. Lüttschwager NOB. Unbranched n-alkanes. Raman spectroscopy of conformational rearrangements at low temperatures. Berlin: Springer; 2014. p. 37–117.

    Google Scholar 

Download references

Acknowledgments

Authors thank Mr. Alexey Buzyurov (Kazan Federal University, Department of Physical Chemistry) for the valuable advices concerning vapor pressure measurements and data processing and Mr. Roman Nosov (Kazan Federal University, Department of Physical Chemistry) for the assistance in HPLC measurements. This work was supported by the Russian Science Foundation (Project No. 22-43-04412).

Author information

Authors and Affiliations

Authors

Contributions

AAN contributed to investigation, writing—original draft; DNB contributed to investigation, writing—original draft, conceptualization, methodology; MIY contributed to writing—original draft, conceptualization, methodology, writing—review and editing; ISB contributed to investigation; MAZ contributed to investigation; BNS contributed to project administration.

Corresponding author

Correspondence to Dmitrii N. Bolmatenkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 126 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notfullin, A.A., Bolmatenkov, D.N., Yagofarov, M.I. et al. Vaporization thermodynamics of normal alkyl benzoates. J Therm Anal Calorim 147, 14631–14647 (2022). https://doi.org/10.1007/s10973-022-11643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11643-7

Keywords

Navigation