Skip to main content
Log in

Experimental and numerical study of falling-film hydrodynamics and droplet flow regimes over horizontal tubes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Gravity-driven horizontal falling-film flow phenomenon is a ground-breaking technology that has been actively used in a wide range of industrial applications, including desalination, petroleum refineries, food processing industries, and refrigeration, among others. A series of experiments and a 2-D two-phase model were developed to investigate falling-film flow regimes, microscopic flow mechanism, and finer flow parameter details. The experiments focused primarily on axial inter-tube flow modes, and circumferential flow parameters were evaluated using numerical simulations. A high-speed digital photographic device was used to capture and visualize the flow pattern. The VOF method is used to capture the liquid–gas interface. The Reynolds number ranged from 41 to 1000, the tube spacing was 10/20/30/40 mm, and the contact angle was 0°. According to the findings, droplet flow has three important phases, detached spherical flow pattern, discrete spherical flow pattern, full neck formation by linked droplets, and droplet flow before reaching column flow. The Reynolds numbers 166, 208, and 250 have departure-site spacing values of approximately 23.84 mm, 18.16 mm, and 14.52 mm, respectively. The flow parameters such as radial film thickness and vortices beneath the tube increase with increasing Reynolds number. As Reynolds number increases, the departure-site spacing and liquid film inter-tube propagation time decrease. The thinnest film zone appeared between 90°and 140°. The velocity magnitude of the liquid film over the test tube is greater than that of the stabilizing tube, despite being close to the distributor. Furthermore, the film velocity on the lower half of the tube wall is slightly higher than that on the upper half of the tube wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

d :

Diameter of the tube (mm)

D :

Dimensionless film thickness

\(\overrightarrow{F}\) :

Surface tension force (N)

\(g\) :

Gravitational constant (m s−2)

H :

Liquid distributor height (mm)

\(k\) :

Interface curvature

n :

Correlation constant

n :

Normal vector

S :

Tube spacing (mm)

t :

Time, seconds

\(\rho\) :

Density (kg m−3)

\(\overrightarrow{\vartheta }\) :

Mixture velocity (m s−1)

\({\mu }_{\mathrm{L}}\) :

Dynamic viscosity of the water (kg m−1 s−1)

\(\Gamma\) :

Flow rate of a liquid on one side of the circular tube (kg m−1 s−1)

\(\delta\) :

Liquid film thickness (mm)

\(\sigma\) :

Surface tension (N m−1)

θ:

Circumferential angle (°)

Re:

Reynolds number

CFD:

Computational fluid dynamics

CSF:

Continuum surface force

DFT:

Dimensionless film thickness

PISO:

Pressure implicit with splitting of operator

PRESTO:

Pressure staggering option

VOF:

Volume of fluid

\({\alpha }_{\mathrm{q}}\) :

Volume fraction of phase q

Eq.:

Equation

\(L\) :

Liquid

\(G\) :

Gas

s :

Solid

q :

Phase

References

  1. Zhang L, Akiyama T. How to recuperate industrial waste heat beyond time and space. Int J Exergy. 2009;6(2):214–27. https://doi.org/10.1504/IJEX.2009.023999.

    Article  CAS  Google Scholar 

  2. Karmakar A, Acharya S. Wettability effects on falling film flow and heat transfer over horizontal tubes in jet flow mode. J Heat Trans. 2020. https://doi.org/10.1115/1.4048088.

    Article  Google Scholar 

  3. Fernández-Seara J, Pardiñas ÁÁ. Refrigerant falling film evaporation review: description, fluid dynamics and heat transfer. Appl Therm Eng. 2014;64(1–2):155–71. https://doi.org/10.1016/j.applthermaleng.2013.11.023.

    Article  CAS  Google Scholar 

  4. Aly S, Jawad J, Manzoor H, Simson S, Lawler J, Mabrouk AN. Pilot testing of a novel integrated multi effect distillation-absorber compressor (MED-AB) technology for high performance seawater desalination. Desalination. 2022;1(521): 115388. https://doi.org/10.1016/j.desal.2021.115388.

    Article  CAS  Google Scholar 

  5. Hesari F, Salimnezhad F, Manesh MH, Morad MR. A novel configuration for low-grade heat-driven desalination based on cascade MED. Energy. 2021;15(229): 120657. https://doi.org/10.1016/j.energy.2021.120657.

    Article  Google Scholar 

  6. Sun C, Liu L, Li Y, Cao X, Han H. Experimental and numerical study on the falling film flow characteristics outside circular tube applied in floating liquefied natural gas (FLNG) under offshore conditions. Int J Heat Fluid Flow. 2021;1(92): 108883. https://doi.org/10.1016/j.ijheatfluidflow.2021.108883.

    Article  Google Scholar 

  7. Cyklis P. Industrial scale engineering estimation of the heat transfer in falling film juice evaporators. Appl Therm Eng. 2017;1(123):1365–73. https://doi.org/10.1016/j.applthermaleng.2017.05.194.

    Article  Google Scholar 

  8. Narváez-Romo B, Chhay M, Zavaleta-Aguilar EW, Simões-Moreira JR. A critical review of heat and mass transfer correlations for LiBr-H2O and NH3-H2O absorption refrigeration machines using falling liquid film technology. Appl Therm Eng. 2017;1(123):1079–95. https://doi.org/10.1016/j.applthermaleng.2017.05.092.

    Article  CAS  Google Scholar 

  9. Xu L, Ge M, Wang S, Wang Y. Heat-transfer film coefficients of falling film horizontal tube evaporators. Desalination. 2004;15(166):223–30. https://doi.org/10.1016/j.desal.2004.06.077.

    Article  CAS  Google Scholar 

  10. Jiang JF, Li SF, Liu ZH. Study on heat transfer and cold storage characteristics of a falling film type of cold energy regenerator with PCM. Appl Therm Eng. 2018;1(143):676–87. https://doi.org/10.1016/j.applthermaleng.2018.07.127.

    Article  CAS  Google Scholar 

  11. Roques JF, Thome JR. Falling films on arrays of horizontal tubes with R-134a, part II: flow visualization, onset of dryout, and heat transfer predictions. Heat Transfer Eng. 2007;28(5):415–34. https://doi.org/10.1080/01457630601163736.

    Article  CAS  Google Scholar 

  12. Yan WM, Pan CW, Yang TF, Ghalambaz M. Experimental study on fluid flow and heat transfer characteristics of falling film over tube bundle. Int J Heat Mass Transf. 2019;1(130):9–24. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.070.

    Article  Google Scholar 

  13. Zhang H, Yin D, You S, Zheng W, Li B, Zhang X. Numerical and experimental investigation on the heat and mass transfer of falling film and droplet regimes in horizontal tubes LiBr-H2O absorber. Appl Therm Eng. 2019;5(146):752–67. https://doi.org/10.1016/j.applthermaleng.2018.10.046.

    Article  CAS  Google Scholar 

  14. Hu X, Jacobi AM. The intertube falling film Part 1—Flow characteristics, mode transitions, and hysteresis. J Heat Trans. 1996;10(1115/1):2822676.

    Google Scholar 

  15. Armbruster R, Mitrovic J. Patterns of falling film flow over horizontal smooth tubes. InInternational Heat Transfer Conference Digital Library 1994. Begel House Inc.. DOI: https://doi.org/10.1615/IHTC10.460.

  16. Chen J, Zhang R, Niu R. Numerical simulation of horizontal tube bundle falling film flow pattern transformation. Renew Energy. 2015;1(73):62–8. https://doi.org/10.1016/j.renene.2014.08.007.

    Article  Google Scholar 

  17. Mohamed AM. Flow behavior of liquid falling film on a horizontal rotating tube. Exp Therm Fluid Sci. 2007;31(4):325–32. https://doi.org/10.1016/j.expthermflusci.2006.05.004.

    Article  CAS  Google Scholar 

  18. Wang X, Hrnjak PS, Elbel S, Jacobi AM, He M. Flow modes and mode transitions for falling films on flat tubes. J Heat Trans. 2012. https://doi.org/10.1115/1.4005095.

    Article  Google Scholar 

  19. Qu Z, Ma Z, Chen J, Zhang J. Falling film flow mode transitions on an array of horizontal tubes under nonuniform liquid distribution conditions. Exp Thermal Fluid Sci. 2019;1(109): 109901. https://doi.org/10.1016/j.expthermflusci.2019.109901.

    Article  Google Scholar 

  20. Wang X, He M, Lv K, Fan H, Jacobi AM. Effects of liquid supply method on falling-film mode transitions on horizontal tubes. Heat Trans Eng. 2013;34(7):562–79. https://doi.org/10.1080/01457632.2013.730398.

    Article  CAS  Google Scholar 

  21. W. Nusselt, 1916. Die oberflächenkondensation des wasserdampfes zeitschrift.

  22. Hou H, Bi Q, Ma H, Wu G. Distribution characteristics of falling film thickness around a horizontal tube. Desalination. 2012;31(285):393–8. https://doi.org/10.1016/j.desal.2011.10.020.

    Article  CAS  Google Scholar 

  23. Zhang JT, Wang BX, Peng XF. Falling liquid film thickness measurement by an optical-electronic method. Rev Sci Instrum. 2000;71(4):1883–6. https://doi.org/10.1063/1.1150557.

    Article  CAS  Google Scholar 

  24. Zaitsev DV, Kabov OA, Evseev AR. Measurement of locally heated liquid film thickness by a double-fiber optical probe. Exp Fluids. 2003;34(6):748–54. https://doi.org/10.1007/s00348-003-0621-1.

    Article  CAS  Google Scholar 

  25. Chen X, Shen S, Wang Y, Chen J, Zhang J. Measurement on falling film thickness distribution around horizontal tube with laser-induced fluorescence technology. Int J Heat Mass Trans. 2015;1(89):707–13. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.016.

    Article  CAS  Google Scholar 

  26. Han Y, Kanno H, Ahn YJ, Shikazono N. Measurement of liquid film thickness in micro tube annular flow. Int J Multiph Flow. 2015;1(73):264–74. https://doi.org/10.1016/j.ijmultiphaseflow.2015.03.016.

    Article  CAS  Google Scholar 

  27. Jayakumar A, Balachandran A, Mani A, Balasubramaniam K. Falling film thickness measurement using air-coupled ultrasonic transducer. Exp Therm Fluid Sci. 2019;1(109): 109906. https://doi.org/10.1016/j.expthermflusci.2019.109906.

    Article  Google Scholar 

  28. Qiu QG, Jiang WG, Shen SQ, Zhu XJ, Mu XS. Numerical investigation on characteristics of falling film in horizontal-tube falling film evaporator. Desalin Water Treat. 2015;55(12):3247–52. https://doi.org/10.1080/19443994.2014.968907.

    Article  CAS  Google Scholar 

  29. Tahir F, Mabrouk A, Koç M. Impact of surface tension and viscosity on falling film thickness in multi-effect desalination (MED) horizontal tube evaporator. Int J Therm Sci. 2020;1(150): 106235. https://doi.org/10.1016/j.ijthermalsci.2019.106235.

    Article  Google Scholar 

  30. Ji G, Wu J, Chen Y, Ji G. Asymmetric distribution of falling film solution flowing on hydrophilic horizontal round tube. Int J Refrig. 2017;1(78):83–92. https://doi.org/10.1016/j.ijrefrig.2017.03.022.

    Article  CAS  Google Scholar 

  31. Qiu Q, Zhu X, Mu L, Shen S. Numerical study of falling film thickness over fully wetted horizontal round tube. Int J Heat Mass Transf. 2015;1(84):893–7. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.024.

    Article  Google Scholar 

  32. Wang Q, Li M, Xu W, Yao L, Liu X, Su D, Wang P. Review on liquid film flow and heat transfer characteristics outside horizontal tube falling film evaporator: Cfd numerical simulation. Int J Heat Mass Transf. 2020;1(163): 120440. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120440.

    Article  CAS  Google Scholar 

  33. Yung D, Lorenz JJ, Ganic EN. Vapor/liquid interaction and entrainment in falling film evaporators. J Heat Trans. 1980. https://doi.org/10.1115/1.3244242.

    Article  Google Scholar 

  34. Killion JD, Garimella S. Gravity-driven flow of liquid films and droplets in horizontal tube banks. Int J Refrig. 2003;26(5):516–26. https://doi.org/10.1016/S0140-7007(03)00009-4.

    Article  CAS  Google Scholar 

  35. Liu S, Shen S, Mu X, Guo Y, Yuan D. Experimental study on droplet flow of falling film between horizontal tubes. Int J Multiph Flow. 2019;1(118):10–22. https://doi.org/10.1016/j.ijmultiphaseflow.2019.05.008.

    Article  CAS  Google Scholar 

  36. Kandukuri P, Deshmukh S, Katiresan S. Characterization of column flow regimes on horizontal tubes for falling-film systems: an experimental approach. Asia-Pac J Chem Eng. 2022;17(2): e2745. https://doi.org/10.1002/apj.2745.

    Article  CAS  Google Scholar 

  37. Peng-o T, Chaikan P. High performance and energy efficient sobel edge detection. Microprocess Microsyst. 2021;1(87): 104368. https://doi.org/10.1016/j.micpro.2021.104368.

    Article  Google Scholar 

  38. Abasi SA, Tehran M, Fairchild MD. Colour metrics for image edge detection. Color Res Appl. 2020;45(4):632–43. https://doi.org/10.1002/col.22494.

    Article  Google Scholar 

  39. Abdullah SS, Rajasekaran MP. Modified Sobel mask to locate knee joint boundaries. 3C Tecnología. Glosas De innovaci on Aplicadas a La Pyme. 2020:195–205. DOI: https://doi.org/10.17993/3ctecno.2020.specialissue4.195-205

  40. Jing M, Du Y. Flank angle measurement based on improved Sobel operator. Manufact Lett. 2020;1(25):44–9. https://doi.org/10.1016/j.mfglet.2020.07.002.

    Article  Google Scholar 

  41. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39(1):201–25. https://doi.org/10.1016/0021-9991(81)90145-5.

    Article  Google Scholar 

  42. Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100(2):335–54. https://doi.org/10.1016/0021-9991(92)90240-Y.

    Article  CAS  Google Scholar 

  43. Killion JD, Garimella S. Pendant droplet motion for absorption on horizontal tube banks. Int J Heat Mass Trans. 2004;47(19–20):4403–14. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.032.

    Article  CAS  Google Scholar 

  44. Zheng Y, Yang S, Zhao X, Wang Z, Yuan J, Ma X. The transient flow mechanism and intermittent film thickness evolution regulation of droplet mode for horizontal tube falling film. Eur J Mech-B/Fluids. 2021;1(89):151–60. https://doi.org/10.1016/j.euromechflu.2021.02.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prudviraj Kandukuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandukuri, P., Deshmukh, S. & Katiresan, S. Experimental and numerical study of falling-film hydrodynamics and droplet flow regimes over horizontal tubes. J Therm Anal Calorim 148, 2781–2798 (2023). https://doi.org/10.1007/s10973-022-11624-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11624-w

Keywords

Navigation