Skip to main content
Log in

Effect of ambient wind on the flame retardancy of intumescent coatings

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ambient wind is an important environmental factor in fire safety research. However, little work has been conducted to investigate the effect of ambient wind on the flame retardancy of intumescent fire-retardant coatings. In this work, steel plates coated with a commercially available intumescent fire-retardant coating were applied for the fire resistance test. External heat flux and ambient wind speed were set constant to simulate actual fire scenarios. The swelling evolutions of intumescent coatings with/without wind effect were recorded. The morphology, structure, thermal stability, and impact resistance of chars at the front end and the rear end were analyzed. Results showed that intumescent coatings undergo a non-uniform swelling process with wind effect. The evolutions of coating thickness, coating surface temperature, and steel temperature can be divided into three stages. Ambient wind affects the coating surface temperature by convective cooling and char oxidation reaction. The maximum coating surface temperature at the front end is 25 °C higher than the rear end. Besides, ambient wind accelerates (and decelerates) the char oxidation reaction at the front (and the rear) end, resulting in the coating thickness at the front end growing slower than the rear end. The char at the front end is thin and condensed with good impact resistance and thermal stability. However, its poor thermal insulation accelerates the steel temperature increase at the front end and promotes the failure of intumescent coatings. Thus, ambient wind decreases the flame retardancy of intumescent fire-retardant coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fire and Rescue Bureau of Ministry of Emergency Management of China, National fire and emergency response in 2020. https://www.119.gov.cn/article/41kpo4CAQyv. Accessed 1 Feb 2021.

  2. Lucherini A, Maluk C. Intumescent coatings used for the fire-safe design of steel structures: a review. J Constr Steel Res. 2019. https://doi.org/10.1016/j.jcsr.2019.105712.

    Article  Google Scholar 

  3. Fan F, Xia Z, Li Q, Li Z, Chen H. Thermal stability of phosphorus-containing styrene–acrylic copolymer and its fire retardant performance in waterborne intumescent coatings. J Therm Anal Calorimetry. 2013;114(3):937–46. https://doi.org/10.1007/s10973-013-3099-y.

    Article  CAS  Google Scholar 

  4. Jun-wei G, Zhang GC, Dong SL, Zhang QY, Kong J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf Coat Technol. 2007;201(18):7835–41. https://doi.org/10.1016/j.surfcoat.2007.03.020.

    Article  CAS  Google Scholar 

  5. Bahrani B, Hemmati V, Zhou A, Quarles SL. Effects of natural weathering on the fire properties of intumescent fire-retardant coatings. Fire Mater. 2018;42(4):413–23. https://doi.org/10.1002/fam.2506.

    Article  CAS  Google Scholar 

  6. Yan L, Zhisheng X, Wang X. Synergistic flame-retardant and smoke suppression effects of zinc borate in transparent intumescent fire-retardant coatings applied on wood substrates. J Therm Anal Calorim. 2018;136(4):1563–74. https://doi.org/10.1007/s10973-018-7819-1.

    Article  CAS  Google Scholar 

  7. Li Y, Feng Y, Zhisheng X, Yan L, Xie X, Wang Z. Synergistic effect of clam shell bio-filler on the fire-resistance and char formation of intumescent fire-retardant coatings. J Mater Res Technol. 2020;9(6):14718–28. https://doi.org/10.1016/j.jmrt.2020.10.055.

    Article  CAS  Google Scholar 

  8. Lucherini A, Hidalgo JP, Torero JL, Maluk C. Influence of heating conditions and initial thickness on the effectiveness of thin intumescent coatings. Fire Saf J. 2021;120:103078. https://doi.org/10.1016/j.firesaf.2020.103078.

    Article  CAS  Google Scholar 

  9. Zhang F, Chen P, Wang Y, Li S. Smoke suppression and synergistic flame retardancy properties of zinc borate and diantimony trioxide in epoxy-based intumescent fire-retardant coating. J Ther Anal Calorim. 2016;123(2):1319–27. https://doi.org/10.1007/s10973-015-5094-y.

    Article  CAS  Google Scholar 

  10. Wang LL, Wang YC, Yuan JF, Li GQ. Thermal conductivity of intumescent coating char after accelerated aging: thermal conductivity of intumescent coating char. Fire Mater. 2013;37(6):440–56. https://doi.org/10.1002/fam.2137.

    Article  CAS  Google Scholar 

  11. Rush D, Bisby L, Gillie M, Jowsey A, Lane B. Design of intumescent fire protection for concrete filled structural hollow sections. Fire Saf J. 2014;67:13–23. https://doi.org/10.1016/j.firesaf.2014.05.004.

    Article  CAS  Google Scholar 

  12. Bilotta A, de Silva D, Nigro E. General approach for the assessment of the fire vulnerability of existing steel and composite steel-concrete structures. J Build Eng. 2016;8:198–207. https://doi.org/10.1016/j.jobe.2016.10.011.

    Article  Google Scholar 

  13. Bilotta A, de Silva D, Nigro E. Tests on intumescent paints for fire protection of existing steel structures. Constr Build Mater. 2016;121:410–22. https://doi.org/10.1016/j.conbuildmat.2016.05.144.

    Article  Google Scholar 

  14. Silva DD, Bilotta A, Nigro E. Experimental investigation on steel elements protected with intumescent coating. Constr Build Mater. 2019;205:232–44. https://doi.org/10.1016/j.conbuildmat.2019.01.223.

    Article  Google Scholar 

  15. Jimenez M, Duquesne S, Bourbigot S. Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol. 2006;201(3–4):979–87. https://doi.org/10.1016/j.surfcoat.2006.01.026.

    Article  CAS  Google Scholar 

  16. Reshetnikov IS, Garashchenko AN, Strakhov VL. Experimental investigation into mechanical destruction of intumescent chars. Polym Adv Technol. 2015;11:392–7.

    Article  Google Scholar 

  17. Ahmad F, Ullah S, Haswina N. An investigation on thermal performance of wollastonite and bentonite reinforced intumescent fire-retardant coating for steel structures. Constr Build Mater. 2019;228:116734. https://doi.org/10.1016/j.conbuildmat.2019.116734.

    Article  CAS  Google Scholar 

  18. Bartholmai M, Schriever R, Schartel B. Influence of external heat flux and coating thickness on the thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis. Fire Mater. 2003;27(4):151–62. https://doi.org/10.1002/fam.823.

    Article  CAS  Google Scholar 

  19. Bartholmai M, Schartel B. Assessing the performance of intumescent coatings using bench-scaled cone calorimeter and finite difference simulations. Fire Mater. 2007;31(3):187–205. https://doi.org/10.1002/fam.933.

    Article  CAS  Google Scholar 

  20. Wang J, Wang G. Influences of montmorillonite on fire protection, water and corrosion resistance of waterborne intumescent fire retardant coating for steel structure. Surf Coat Technol. 2014;239:177–84. https://doi.org/10.1016/j.surfcoat.2013.11.037.

    Article  CAS  Google Scholar 

  21. Duquesne S, Magnet S, Jama C, Delobel R. Intumescent paints: fire protective coatings for metallic substrates. Surf Coat Technol. 2004;180–181:302–7. https://doi.org/10.1016/j.surfcoat.2003.10.075.

    Article  CAS  Google Scholar 

  22. Zhang Y, Wang YC, Bailey CG, Taylor AP. Global modelling of fire protection performance of intumescent coating under different cone calorimeter heating conditions. Fire Saf J. 2012;50:51–62. https://doi.org/10.1016/j.firesaf.2012.02.004.

    Article  CAS  Google Scholar 

  23. Zeng Y, Weinell CE, Dam-Johansen K, Ring L, Kiil S. Exposure of hydrocarbon intumescent coatings to the UL1709 heating curve and furnace rheology: Effects of zinc borate on char properties. Prog Org Coat. 2019;135:321–30. https://doi.org/10.1016/j.porgcoat.2019.06.020.

    Article  CAS  Google Scholar 

  24. Ullah S, Faiz Ahmad AM, Shariff MAB. Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate. Polym Degradation Stab. 2014;110:91–103. https://doi.org/10.1016/j.polymdegradstab.2014.08.017.

    Article  CAS  Google Scholar 

  25. Morys M, Häßler D, Krüger S, Schartel B, Hothan S. Beyond the standard time-temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves. Fire Saf J. 2020;112:102951. https://doi.org/10.1016/j.firesaf.2020.102951.

    Article  CAS  Google Scholar 

  26. Dong S, Xiao G, Chen C, Yang Z, Chen C, Wang Q, Lin L. Polydopamine enwrapped titanium dioxide-assisted dispersion of graphene to strength fire resistance of intumescent waterborne epoxy coating. Prog Org Coat. 2021;157:106291. https://doi.org/10.1016/j.porgcoat.2021.106291.

    Article  CAS  Google Scholar 

  27. Yasir M, Amir N, Ahmad F, Ullah S, Jimenez M. Effect of basalt fibers dispersion on steel fire protection performance of epoxy-based intumescent coatings. Prog Org Coat. 2018;122:229–38.

    Article  CAS  Google Scholar 

  28. Zhang T, Zhang Y, Xiao Z, Yang Z, Hehua Zhu J, Woody J, Yan Z. Development of a novel bio-inspired cement-based composite material to improve the fire resistance of engineering structures. Constr Build Mater. 2019;225:99–111. https://doi.org/10.1016/j.conbuildmat.2019.07.121.

    Article  CAS  Google Scholar 

  29. Aziz H, Ahmad F. Effects from nano-titanium oxide on the thermal resistance of an intumescent fire retardant coating for structural applications. Prog Org Coat. 2016;101:431–9.

    Article  CAS  Google Scholar 

  30. Puspitasari WC, Ahmad F, Ullah S, Hussain P, Megat-Yusoff PSM, Masset PJ. The study of adhesion between steel substrate, primer, and char of intumescent fire retardant coating. Prog Org Coat. 2019;127:181–93. https://doi.org/10.1016/j.porgcoat.2018.11.015.

    Article  CAS  Google Scholar 

  31. Naik AD, Duquesne S, Bourbigot S. Hydrocarbon time–temperature curve under airjet perturbation: an in situ method to probe char stability and integrity in reactive fire protection coatings. J Fire Sci. 2016;34(5):385–97. https://doi.org/10.1177/0734904116658049.

    Article  CAS  Google Scholar 

  32. Ahmad F, Zulkurnain ESB, Ullah S, Amir N. Effects of nano-sized boron nitride on thermal decomposition and water resistance behaviour of epoxy-based intumescent coating. J Anal Appl Pyrolysis. 2018;132:171–83. https://doi.org/10.1016/j.jaap.2018.03.002.

    Article  CAS  Google Scholar 

  33. Dayang Y, Liang J, Han X, Zhao J. Profiling the regional wind power fluctuation in China. Energy Policy. 2011;39(1):299–306. https://doi.org/10.1016/j.enpol.2010.09.044.

    Article  Google Scholar 

  34. Qian H, Chen S, Wang T, Cheng G, Chen X, Zhenwen X, Zeng Q, Liu Y, Yan D. Silicon nitride modified enamel coatings enable high thermal shock and corrosion resistances for steel protection. Surf Coat Technol. 2021;421:127474. https://doi.org/10.1016/j.surfcoat.2021.127474.

    Article  CAS  Google Scholar 

  35. Morys M, Illerhaus B, Sturm H, Schartel B. Variation of intumescent coatings revealing different modes of action for good protection performance. Fire Technol. 2017;53(4):1569–87. https://doi.org/10.1007/s10694-017-0649-z.

    Article  Google Scholar 

  36. Wang G, Yang J. Influences of molecular weight of epoxy binder on fire protection of waterborne intumescent fire resistive coating. Surf Coat Technol. 2012;206(8–9):2146–51. https://doi.org/10.1016/j.surfcoat.2011.09.050.

    Article  CAS  Google Scholar 

  37. Yan L, Zhisheng X, Deng N. Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates. Progr Org Coat. 2019;135:123–34. https://doi.org/10.1016/j.porgcoat.2019.05.043.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by High-Tech Industry Science and Technology Innovation Leading Plan of Hunan Province (No. 2020GK2079), the Natural Science Foundation of Hunan (No.2022JJ40618), the National Natural Science Foundation of China (No. 51906261), and the Fundamental Research Funds for the Central Universities of Central South University (No. 2021zzts0767).

Author information

Authors and Affiliations

Authors

Contributions

Chuangang Fan and Zhengyang Wang were involved in conceptualization, project administration and supervision. Chuangang Fan, Long Yan, Deju Zhu, Changhong Ou and Zhengyang Wang were involved in writing—review & editing. Yuhao Li and Yuxin Gao were involved in the investigation and collected resources. Yuhao Li was involved in writing—original draft. Yuxin Gao performed validation. Long Yan, Deju Zhu, Changhong Ou and Zhengyang Wang were involved in methodology. Zhengyang Wang was involved in data curation and funding acquisition.

Corresponding author

Correspondence to Zhengyang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Li, Y., Gao, Y. et al. Effect of ambient wind on the flame retardancy of intumescent coatings. J Therm Anal Calorim 147, 14329–14341 (2022). https://doi.org/10.1007/s10973-022-11593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11593-0

Keywords

Navigation