Skip to main content
Log in

A computational study of non-Fourier temperature distribution in HIFU ablation of 3D liver tumor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

So far, many researches have been done on temperature distribution due to thermal therapy. In these studies, the temperature field is obtained using the Fourier heat transfer equation. In biological tissues, because of the inhomogeneity nature of materials, temperature distribution has time delay and temperature oscillations. In this case, using the Fourier heat transfer creates an error, and for higher accuracy, using non-Fourier models for obtaining temperature distribution is necessary. In this study, the three-dimensional non-Fourier temperature distribution in liver tumor under HIFU radiation in the presence of significant blood vessel are studied. Temperature results for different distances of the ultrasonic transducer axis relative to the vessel are obtained and compared. The Helmholtz equation is used to simulate the acoustic pressure field, and the Fourier heat transfer model and non-Fourier TWMBT and DPL models are used to simulate the temperature distributions. The results show that by moving the wave axis away from the center of the vessel until the coordinates of the axis are smaller than the radius of the vessel, the temperature distribution decreases, and then as the transducer axis moves away from the vessel wall, the resulting temperature distribution values increase. The results also show the high accuracy of the non-Fourier heat transfer models, especially the DPL model compared to the Fourier heat transfer model in simulating the temperature distribution in biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C :

Specific heat \({\text{J}} \left( {{\text{kg}}.{\text{K}}} \right)^{ - 1}\)

\(C_{0}\) :

Speed of sound \(\left( {{\text{ms}}^{ - 1} } \right)\)

\(C_{\rm C}\) :

Complex speed of sound \(\left( {{\text{ms}}^{ - 1} } \right)\)

\(f_{0}\) :

Initial frequency \(\left( {{\text{MHz}}} \right)\)

I :

Sound intensity \(\left( {{\text{W}}/{\text{m}}^{2} } \right)\)

K :

Thermal conductivity \({\text{W}}\left( {{\text{m}}.{\text{K}}} \right)^{ - 1}\)

m :

Order of PML

p :

Acoustic pressure \(\left( {{\text{MPa}}} \right)\)

u :

Blood velocity(m/s)

\(p_{0}\) :

Focal acoustic pressure \(\left( {{\text{MPa}}} \right)\)

q :

Heat flux \(\left( {{\text{Wm}}^{ - 2} } \right)\)

\(Q_{{{\text{ext}}}}\) :

External heat source \(\left( {{\text{Wm}}^{ - 3} } \right)\)

\(Q_{{{\text{met}}}}\) :

Metabolic heat source \(\left( {{\text{Wm}}^{ - 3} } \right)\)

\(R_{0}\) :

Reflection coefficient of PML

t :

Time \(\left( {\text{s}} \right)\)

\(t_{0}\) :

Initial time \(\left( {\text{s}} \right)\)

T :

Temperature \(\left( {^\circ {\text{C}}} \right)\)

X :

Coordinate in X direction

Y :

Coordinate in Y direction

Z :

Coordinate in Z direction

\(Z_{\rm p}\) :

PML thickness \(\left( {\text{m}} \right)\)

\(\alpha\) :

Absorption coefficient \(\left( {{\text{Np}}\left( {{\text{MHz}}.{\text{m}}} \right)^{ - 1} } \right)\)

\(\eta\) :

Attenuation power

\(\lambda\) :

Wavelength \(\left( {\text{m}} \right)\)

\(\rho\) :

Density \(\left( {{\text{kg m}}^{ - 3} } \right)\)

\(\tau_{\rm q}\) :

Heat flux thermal relaxation time \(\left( {\text{s}} \right)\)

\(\tau_{{\text{t}}}\) :

Temperature gradient thermal relaxation time \(\left( {\text{s}} \right)\)

\(\omega\) :

Angular frequency \(\left( {{\text{rad}} {\text{s}}^{ - 1} } \right)\)

\(\omega_{{\text{b}}}\) :

Blood perfusion rate \(\left( {{\text{s}}^{ - 1} } \right)\)

b :

Blood

t :

Tissue

HIFU:

High-intensity focused ultrasound

TWMBT:

Thermal wave model of bio-heat transfer

DPL:

Dual phase lag

PML:

Perfect matched layer

References

  1. ter Haar G, Coussios C. High intensity focused ultrasound: physical principles and devices. Int J Hyperth. 2007;23(2):89–104.

    Article  Google Scholar 

  2. Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci. 2014;17(1):136–53.

    Article  Google Scholar 

  3. Al-Bataineh O, Jenne J, Huber P. Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev. 2012;38(5):346–53.

    Article  Google Scholar 

  4. Izadifar Z, Izadifar Z, Chapman D, Babyn P. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. J Clin Med. 2020;9(2):460.

    Article  Google Scholar 

  5. Leslie T, Kennedy J. High intensity focused ultrasound in the treatment of abdominal and gynaecological diseases. Int J Hyperth. 2007;23(2):173–82.

    Article  CAS  Google Scholar 

  6. Zhou Y-F. High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol. 2011;2(1):8.

    Article  Google Scholar 

  7. Wu F, Wang Z-B, Chen W-Z, Wang W, Gui Y, Zhang M, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrason Sonochem. 2004;11(3–4):149–54.

    Article  CAS  Google Scholar 

  8. Illing R, Kennedy J, Wu F, Ter Haar G, Protheroe A, Friend P, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer. 2005;93(8):890–5.

    Article  CAS  Google Scholar 

  9. Wu F, Wang Z-B, Chen W-Z, Zhu H, Bai J, Zou J-Z, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Ann Surg Oncol. 2004;11(12):1061–9.

    Article  Google Scholar 

  10. Aubry J-F, Pauly KB, Moonen C, Haar G, Ries M, Salomir R, et al. The road to clinical use of high-intensity focused ultrasound for liver cancer: technical and clinical consensus. J Ther Ultrasound. 2013;1(1):1–7.

    Article  Google Scholar 

  11. Kennedy J, Wu F, Ter Haar G, Gleeson F, Phillips R, Middleton M, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics. 2004;42(1–9):931–5.

    Article  CAS  Google Scholar 

  12. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10(6):787–800.

    Article  CAS  Google Scholar 

  13. Wright N, Humphrey J. Denaturation of collagen via heating: an irreversible rate process. Annu Rev Biomed Eng. 2002;4(1):109–28.

    Article  CAS  Google Scholar 

  14. Kolios MC, Sherar MD, Hunt JW. Blood flow cooling and ultrasonic lesion formation. Med Phys. 1996;23(7):1287–98.

    Article  CAS  Google Scholar 

  15. Curra FP, Mourad PD, Khokhlova VA, Cleveland RO, Crum LA. Numerical simulations of heating patterns and tissue temperature response due to high-intensity focused ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(4):1077–89.

    Article  CAS  Google Scholar 

  16. Boluriaan S, Morris PJ. Acoustic streaming: from Rayleigh to today. Int J Aeroacoust. 2003;2(3):255–92.

    Article  Google Scholar 

  17. Wu J. Acoustic streaming and its applications. Fluids. 2018;3(4):108.

    Article  CAS  Google Scholar 

  18. Sheu TW, Solovchuk MA, Chen AW, Thiriet M. On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor. Int J Heat Mass Transf. 2011;54(17–18):4117–26.

    Article  Google Scholar 

  19. Solovchuk MA, Sheu TW, Thiriet M, eds. The effects of acoustic streaming on the temperature distribution during focused ultrasound therapy. In: AIP conference proceedings; 2012: Am Inst Phys. 2012.

  20. Tzou DY. A unified field approach for heat conduction from macro-to micro-scales. J Heat Transf. 1995;117(1):8–16.

    Article  Google Scholar 

  21. Liu J, Chen X, Xu LX. New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans Biomed Eng. 1999;46(4):420–8.

    Article  CAS  Google Scholar 

  22. Xu F, Lu T, Seffen K, Ng E. Mathematical modeling of skin bioheat transfer. Appl Mech Rev. 2009. https://doi.org/10.1115/1.3124646.

    Article  Google Scholar 

  23. Roemer RB, Oleson JR, Cetas TC. Oscillatory temperature response to constant power applied to canine muscle. Am J Physiol Regul Integr Comp Physiol. 1985;249(2):R153–8.

    Article  CAS  Google Scholar 

  24. Wu W, Li X. Application of the time discontinuous Galerkin finite element method to heat wave simulation. Int J Heat Mass Transf. 2006;49(9–10):1679–84.

    Article  Google Scholar 

  25. Kaminski W. Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J Heat Transf. 1990;112(3):555–60.

    Article  CAS  Google Scholar 

  26. Shih TC, Kou HS, Liauh CT, Lin WL. The impact of thermal wave characteristics on thermal dose distribution during thermal therapy: a numerical study. Med Phys. 2005;32(9):3029–36.

    Article  Google Scholar 

  27. Li C, Miao J, Yang K, Guo X, Tu J, Huang P, et al. Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating. J Appl Phys. 2018;123(17):174906.

    Article  Google Scholar 

  28. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.

    Article  CAS  Google Scholar 

  29. Tzou DY. Experimental support for the lagging behavior in heat propagation. J Thermophys Heat Transf. 1995;9(4):686–93.

    Article  CAS  Google Scholar 

  30. Shih T-C, Liu H-L, Horng AT-L. Cooling effect of thermally significant blood vessels in perfused tumor tissue during thermal therapy. Int Commun Heat Mass Transf. 2006;33(2):135–41.

    Article  Google Scholar 

  31. Solovchuk MA, Sheu TW, Thiriet M, Lin W-L. On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor. Appl Therm Eng. 2013;56(1–2):62–76.

    Article  Google Scholar 

  32. Pinton GF, Dahl J, Rosenzweig S, Trahey GE. A heterogeneous nonlinear attenuating full-wave model of ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(3):474–88.

    Article  Google Scholar 

  33. Huang J, Holt RG, Cleveland RO, Roy RA. Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms. J Acoust Soc Am. 2004;116(4):2451–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Davoodabadi Farhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roknabadi, A.K., Farhani, S.D. & Roknabadi, M.K. A computational study of non-Fourier temperature distribution in HIFU ablation of 3D liver tumor. J Therm Anal Calorim 147, 12933–12946 (2022). https://doi.org/10.1007/s10973-022-11469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11469-3

Keywords

Navigation