Skip to main content
Log in

Thermal analysis of sintering Li–Ti–Zn ferrite from mechanically activated powders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of mechanical activation of the synthesized ferrite powder on the process of thermal sintering of ferrite ceramics has been studied. Mechanical activation of the powder of Li0.65Fe1.6Ti0.5Zn0.2Mn0.05O4 composition was performed at a drum rotation speed of 300, 600, and 1100 rpm using steel balls with a diameter of 2 and 5 mm. The mechanically activated powder was sintered in a highly sensitive dilatometer at 1010 °C for 2 h. Dilatometric analysis showed that the total shrinkage of the samples during sintering increases at increased energy intensity of ferrite powder milling. It was found that the sample prepared from the powder mechanically activated with 2 mm balls shows the best degree of complete compaction after sintering as compared with the samples activated using 5 mm balls. Shrinkage curves were used for kinetic analysis based on mathematical modeling to determine the parameters of ferrite sintering. Kinetic analysis showed that diffusion models are best suited for modeling the sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Samy AM, Sattar AA, Afify IH. Effect of substitution with potassium and chromium oxides on the magnetic and electrical properties of Li-ferrite. J Alloys Compd. 2010;505:297–301.

    Article  CAS  Google Scholar 

  2. Gao Y, Wang Z, Pei J, Zhang H. Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J Alloys Compd. 2019;774:1233–42.

    Article  CAS  Google Scholar 

  3. Srivastava M, Layek S, Singh J, Das AK, Verma HC, Ojha AK, Lee JH. Synthesis, magnetic and Mössbauer spectroscopic studies of Cr doped lithium ferrite nanoparticles. J Alloys Compd. 2014;591:174–80.

    Article  CAS  Google Scholar 

  4. Wolska E, Piszora P, Nowicki W, Darul J. Vibrational spectra of lithium ferrites: infrared spectroscopic studies of Mn-substituted LiFe5O8. Int J Inorgan Mater. 2001;3:503–7.

    Article  CAS  Google Scholar 

  5. Hessien MM. Synthesis and characterization of lithium ferrite by oxalate precursor route. J Magn Magn Mater. 2008;320:2800–7.

    Article  CAS  Google Scholar 

  6. Kavanlooee M, Hashemi B, Maleki-Ghaleh H, Kavanlooee J. Effects of annealing on phase evolution, microstructure, and magnetic properties of nanocrystalline ball-milled LiZnTi ferrite. J Electron Mater. 2012;41:3082–6.

    Article  Google Scholar 

  7. Saxena NK, Singh B, Kumar N, Pourush PKS. Microstrip triangular patch antenna fabricated on LiTiZn ferrite substrate and tested in the X band range. AEU-Int J Electron C. 2012;66:140–2.

    Article  Google Scholar 

  8. Verma M, Gairola SP, Mathpal MC, Annapoorni S, Kotnala RK. Magnetic and electrical properties of manganese and cadmium co-substituted lithium ferrites. J Alloys Compd. 2009;481:872–6.

    Article  CAS  Google Scholar 

  9. Xie F, Chen Y, Bai M, Wang P. Co-substituted LiZnTiBi ferrite with equivalent permeability and permittivity for high-frequency miniaturized antenna application. Ceram Int. 2019;45:17915–9.

    Article  Google Scholar 

  10. Wang X, Li Y, Chen Z, Zhang H, Su H, Wang G, Liao Y, Zhong Z. Low-temperature sintering and ferromagnetic properties of Li0.35Zn0.3Mn0.05Ti0.15Fe2.15O4 ferrites co-fired with Bi2O3-MgO mixture. J Alloys Compd. 2019;797:566–72.

    Article  CAS  Google Scholar 

  11. Pourush R, Jangid A, Tyagi GS, Srivastava GP, Pourush PKS. Magnetically tunable microstrip linear resonator on polycrystalline ferrite substrate. Microw Opt Techn Let. 2007;49:2868–70.

    Article  Google Scholar 

  12. Pardavi-Horvath M. Microwave applications of soft ferrites. J Magn Magn Mater. 2000;215:171.

    Article  Google Scholar 

  13. Baba PD, Argentina GM, Courtney WE, Dionne GF, Temme DH. Fabrication and properties of microwave lithium ferrites. IEEE Trans Magn. 1972;8:83–94.

    Article  CAS  Google Scholar 

  14. Lysenko EN, Nikolaeva SA, Surzhikov AP, Ghyngazov SA, Plotnikova IV, Vlasov VA, Zhuravlev VA, Zhuravleva EV. Electrical and magnetic properties of ZrO2- doped lithium-titanium-zinc ferrite ceramics. Ceram Int. 2019;45:20148–54.

    Article  CAS  Google Scholar 

  15. Kang SJL. Sintering densification, grain growth and microstructure. Oxford: Elsevier; 2004.

    Google Scholar 

  16. Arab A, Mardaneh MR, Yousefi MH. Investigation of magnetic properties of MnZn-substituted strontium ferrite nanopowders prepared via conventional ceramic technique followed by a high energy ball milling. J Magn Magn Mater. 2015;374:80–4.

    Article  CAS  Google Scholar 

  17. Le PG, Jo G-Y, Ko S-Y, Fisher JG. The effect of sintering temperature and time on the growth of single crystals of 0.75(Na0.5Bi0.5)TiO3–0.25SrTiO3 by solid state crystal growth. J Electroceram. 2018;40:122–37.

    Article  CAS  Google Scholar 

  18. Nikolaev EV, Lysenko EN, Surzhikov AP, Ghyngazov SA, Bordunov SV, Nikolaeva SA. Dilatometric and kinetic analysis of sintering Li-Zn ferrite ceramics from milled reagents. J Therm Anal Calorim. 2020;142:1783–9.

    Article  CAS  Google Scholar 

  19. Lamonova SA, Lysenko EN, Malyshev AV. Influence of mechanical milling conditions on the dispersity of lithium ferrite. IOP Conf Ser Mater Sci Eng. 2015;93: 012035. https://doi.org/10.1088/1757-899X/93/1/012035.

    Article  CAS  Google Scholar 

  20. Rwenyagila ER, Makundi I, Mlyuka NR, Samiji ME. Impact of mechanical activation of reactant powders on the solid-state-densification of Zn1-xLixO and Zn0.7Li0.28Mg0.02O ceramics. Results Mater. 2021;11:100198. https://doi.org/10.1016/j.rinma.2021.100198.

    Article  CAS  Google Scholar 

  21. Nikolić N, Srećković T, Ristić MM. The influence of mechanical activation on zinc stannate spinel formation. J Eur Ceram Soc. 2001;21:2071–4.

    Article  Google Scholar 

  22. Berbenni V, Marini A, Matteazzi P, Ricceri R, Welham NJ. Solid-state formation of lithium ferrites from mechanically activated Li2CO3–Fe2O3 mixtures. J Eur Ceram Soc. 2003;23:527–36.

    Article  CAS  Google Scholar 

  23. Lysenko EN, Nikolaev EV, Surzhikov AP, Nikolaeva SA, Plotnikova IV. The influence of reagents ball milling on the lithium ferrite formation. J Therm Anal Calorim. 2019;138:2005–13.

    Article  CAS  Google Scholar 

  24. Liao Y, Wang Y, Chen Z, Wang X, Li J, Guo R, Liu C, Gan G, Wang G, Li Y-X, Zhang H. Microstructure and enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrite ceramics with Bi2O3-Al2O3 additive. Ceram Int. 2020;46:487–92.

    Article  CAS  Google Scholar 

  25. Yu Z, Chen D, Lan Z, Jiang X, Liu B. Effect of Bi2O3 on properties of lithium–zinc ferrite. J Inorg Mater. 2007;22:1173–7.

    CAS  Google Scholar 

  26. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;52:1–19.

    Article  Google Scholar 

  27. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    Article  CAS  Google Scholar 

  28. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Article  Google Scholar 

  29. Sewry JD, Brown ME. “Model-free” kinetic analysis? Thermochim Acta. 2002;390:217–25.

    Article  CAS  Google Scholar 

  30. Opfermann J. Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  31. Wang Z, Liang Y, Peng N, Peng B. The non-isothermal kinetics of zinc ferrite reduction with carbon monoxide. J Therm Anal Calorim. 2019;136:2157–64.

    Article  CAS  Google Scholar 

  32. Konvička T, Mošner P, Šolc Z. Investigation of the non-isothermal kinetic of the formation of ZnFe2O4 and ZnCr2O4. J Therm Anal Calorim. 2000;60:629–40.

    Article  Google Scholar 

  33. Mürbe J, Töpfer J. Ni-Cu-Zn Ferrites for low temperature firing: II Effects of powder morphology and Bi2O3 addition on microstructure and permeability. J Electroceram. 2006;16:199–205.

    Article  Google Scholar 

  34. Nikolaeva SA, Lysenko EN, Nikolaev EV, Surzhikov AP. Dilatometric analysis of sintering lithium–titanium–zinc ferrite with ZrO2 additive. J Thermal Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10416-4.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation (Grant No. 19-72-10078). The experiments on equipment were supported by Tomsk Polytechnic University development program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Nikolaeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, S.A., Lysenko, E.N., Nikolaev, E.V. et al. Thermal analysis of sintering Li–Ti–Zn ferrite from mechanically activated powders. J Therm Anal Calorim 148, 1687–1692 (2023). https://doi.org/10.1007/s10973-022-11409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11409-1

Keywords

Navigation