Skip to main content
Log in

Experimental study on the runaway behaviors of Panasonic 21,700 LiNi0.8Co0.15Al0.05O2 battery used in electric vehicle under thermal failure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal runaway phenomena of the Panasonic 21,700 LiNi0.8Co0.15Al0.05O2 lithium-ion batteries with 100, 50 and 25% capacity were studied under thermal abuses. Characteristic data of onset temperature, crucial temperature, maximum self-heat rate, maximum temperature and maximum pressure are determined and affirmed for hazard analysis. The maximum temperature could be as high as 1200 °C exceeding the auto-ignition temperature of electrolyte to ignite the flammable vapors exposed to the air. Maximum self-heat rates are determined to be as high as 64,536 °C min−1. Runaway behaviors with respect to the capacities of 50% and 25% are performed in comparison with those of 100%. Thermal runaway consequences possessed by the Panasonic 21,700 LiNi0.8Co0.15Al0.05O2 with the capacity of 25% cannot be indiscreet because its maximum temperature is approximately 600 °C with a maximum self-heat value of 10,000 °C min−1 and an 110 mmol non-condensable gases generated. Differences in runaway behaviors are compared between the 21,700 and 18,650 LiNi0.8Co0.15Al0.05O2 batteries with the same capacity of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AIT:

Auto-ignition temperature

ARC:

Accelerating rate calorimeter

DEC:

Diethyl carbonate

DMC:

Dimethyl carbonate

EC:

Ethylene carbonate

ESS:

Energy storage system

EV:

Electric vehicle

HEV:

Hybrid electric vehicle

LFP:

Lithium iron phosphate

LIB:

Lithium-ion battery

MAWP:

Maximum allowable working pressure

NCA:

Lithium nickel cobalt aluminum oxide

NMC:

Lithium nickel manganese cobalt

PC:

Propylene carbonate

PHEV:

Plug hybrid electric vehicle

PTCD:

Positive temperature coefficient device

SEI:

Solid electrolyte interphase

SHS:

Solar home systems

SOC:

State of charge

STOBA:

Self-terminated oligomers with hyper-branched architecture

TMS:

Thermal management system

C p :

Heat capacity (kJ kg−1 K−1)

m :

Mass of LIB (kg)

m ej :

Mass of the ejecta of LIB due to rupture of battery can under thermal runaway (kg)

m rxn :

Mass of reactive components in an LIB (kg)

n gas :

Quantity of non-condensable gases (mol)

n vapor :

Quantity of vapor (mol)

n tot :

Quantity of non-condensable gases and vapor (mol)

P f :

Final pressure in autoclave after the thermal runaway of LIB (bar)

P max :

Maximum pressure in autoclave under the thermal runaway of LIB (bar)

Q sei :

Heat generation rate from SEI decomposition (Wm3)

Q ne :

Heat generation rate from reaction of lithiated anode material with electrolyte (Wm−3)

Q pe :

Heat generation rate from reaction of delithiated cathode material with electrolyte (Wm−3)

Q ele :

Heat generation rate from decomposition of electrolyte (Wm3)

T amb :

Ambient temperature (°C or K)

T BD :

The temperature of separator breakdown (°C or K)

T cr :

Crucial temperature of LIB under thermal runaway (°C or K)

T max :

Maximum temperature of LIB under thermal runaway (°C or K)

T m r :

Temperature with maximum self-heat rate of LIB under thermal runaway (°C or K)

T onset :

Exothermic onset temperature of LIB under thermal runaway (°C or K)

T PE :

Melting point of PE (°C or K)

T PP :

Melting point of PP (°C or K)

T sei :

Temperature of SEI decomposition (°C or K)

T sm :

The temperature ranges for the action and operation of safety measures to mitigate the thermal runaway of LIBs (°C or K)

V :

Void volume of the reaction vessel (m3 or mL)

dT/dt :

Self-heat rate (°C min−1)

(dT/dt)max :

Maximum self-heat rate (°C min−1)

Δn :

Quantity of non-condensable gases ( mol)

ΔT ad :

Adiabatic temperature rise of LIB under thermal runaway

δ :

Conversion of reactant

Cr:

Crucial

max:

Maximum

References

  1. The Royal Swedish Society of Science, Scientific background on the Nobel Prize in Chemistry 2019. https://www.nobelprize.org/prizes/chemistry/2019/goodenough/facts/ ; https://www.nobelprize.org/prizes/chemistry/2019/yoshino/facts/; https://www.nobelprize.org/prizes/chemistry/2019/whittingham/facts/

  2. Yoshino A. The lithium-ion battery: two breakthroughs in development and two reasons for the Nobel Prize. Bull Chem Soc Jpn. 2022;95:195–7. https://doi.org/10.1246/bcsj.20210338.

    Article  CAS  Google Scholar 

  3. Whittingham MS. Special editorial perspective: beyond li-ion battery chemistry. Chem Rev. 2020;120:6328–30. https://doi.org/10.1021/acs.chemrev.0c00438.

    Article  CAS  PubMed  Google Scholar 

  4. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sust Energ Rev. 2018;89:292–308. https://doi.org/10.1016/j.rser.2018.03.002.

    Article  Google Scholar 

  5. Whittingham MS. Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 2020;20(12):8435–7. https://doi.org/10.1021/acs.nanolett.0c04347.

    Article  CAS  PubMed  Google Scholar 

  6. Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res. 2013;46(5):1053–61. https://doi.org/10.1021/ar2002705.

    Article  CAS  PubMed  Google Scholar 

  7. Duh YS, Lin KH, Kao CS. Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones. J Therm Anal Calorim. 2018;132:1677–92. https://doi.org/10.1007/s10973-018-7077-2.

    Article  CAS  Google Scholar 

  8. Sun P, Bisschop R, Niu H, Huang X. A review of battery fires in electric vehicles. Fire Technol. 2020. https://doi.org/10.1007/s10694-019-00944-3.

    Article  Google Scholar 

  9. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246–67. https://doi.org/10.1016/j.ensm.2017.05.013.

    Article  Google Scholar 

  10. Ren D, Feng X, Liu L, Hsu H, Lu L, Wang L, He X, Ouyang M. Investigating the relationship between internal short circuit and the thermal runaway of lithium-ion batteries under thermal abuse conditions. Energy Stor Mater. 2021;34:563–73. https://doi.org/10.1016/j.ensm.2020.10.020.

    Article  Google Scholar 

  11. Feng X, Zheng S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, Ouyang M. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy. 2019;246:53–64. https://doi.org/10.1016/j.apenergy.2019.04.009.

    Article  CAS  Google Scholar 

  12. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11:1550–8. https://doi.org/10.1038/s41467-020-15355-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang P, Yao C, Mao B, Wang Q, Sun J, Bai Z. The critical characteristics and transition process of lithium-ion battery runaway. Energy. 2020;213: 119082. https://doi.org/10.1016/j.energy.2020.119082.

    Article  CAS  Google Scholar 

  14. Chen H, Buston JEH, Gill J, Howard D, William RCE, Rao Vendra CM, Shelke A, Wen JX. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate. J Power Sources. 2020;472: 228585. https://doi.org/10.1016/j.jpowsour.2020.228585.

    Article  CAS  Google Scholar 

  15. Mao N, Zhang T, Wang Z, Cai Q. A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge. J Power Sources. 2022;518: 230767. https://doi.org/10.1016/j.jpowsour.2021.230767.

    Article  CAS  Google Scholar 

  16. Dubaniewicz TH, Barone TL, Brown CB, Thomas RA. Comparison of thermal runaway pressures within sealed enclosures for nickel manganese cobalt and iron phosphate cathode lithium-ion cells. J Loss Prevent Proc. 2022;76: 104739. https://doi.org/10.1016/j.jlp.2022.104739.

    Article  CAS  Google Scholar 

  17. Xu B, Lee J, Kown D, Kong L, Pecht M. Mitigation strategies for Li-ion battery thermal runaway: a review. Renew Sust Energ Rev. 2021;150: 111437. https://doi.org/10.1016/j.rser.2021.111437.

    Article  CAS  Google Scholar 

  18. Jin C, Sun Y, Wang H, Lai X, Wang S, Chen S, Rui X, Zheng Y, Feng X, Wang H, Ouyang M. Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method. J Power Sources. 2021;504: 230065. https://doi.org/10.1016/j.jpowsour.2021.230065.

    Article  CAS  Google Scholar 

  19. Shen H, Zhang Y, Wu Y. A comparative study on air transport safety of lithium-ion batteries with different SOCs. Appl Therm Eng. 2020;179: 115679. https://doi.org/10.1016/j.applthermaleng.2020.115679.

    Article  CAS  Google Scholar 

  20. Lamb J, Orendorff CJ, Steele LA, Spangler S. Failure propagation in multi-cell lithium ion batteries. J Power Sources. 2015;283:517–23. https://doi.org/10.1016/j.jpowsour.2014.10.081.

    Article  CAS  Google Scholar 

  21. Yuan C, Wang Q, Wang Y, Zhao Y. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng. 2019;153:39–50. https://doi.org/10.1016/j.applthermaleng.2019.02.127.

    Article  Google Scholar 

  22. Tang W, Tam WC, Yuan L, Dubaniewicz T, Thomas R, Soles J. Estimation of the critical external heat leading to the failure of lithium-ion batteries. Appl Therm Eng. 2020;179: 115665. https://doi.org/10.1016/j.applthermaleng.2020.115665.

    Article  CAS  Google Scholar 

  23. Li Q, Yang C, Santhanagopalan S, Smith K, Lamb J, Steele LA, Torres-Castro L. Numerical investigation of thermal runaway mitigation through a passive thermal management system. J Power Sources. 2019;429:80–8. https://doi.org/10.1016/j.jpowsour.2019.04.091.

    Article  CAS  Google Scholar 

  24. Said AO, Lee C, Stoliarov SI. Experimental investigation of cascading failure in 18650 lithium ion cell arrays: Impact of cathode chemistry. J Power Sources. 2020;446: 227347. https://doi.org/10.1016/j.jpowsour.2019.227347.

    Article  CAS  Google Scholar 

  25. Zhang H, Li C, Zhang R, Lin Y, Fang H. Thermal analysis of a 6s4p Lithium-ion battery pack cooled by cold plates based on a multi-domain modeling framework. Appl Therm Eng. 2020;173: 115216. https://doi.org/10.1016/j.applthermaleng.2020.115216.

    Article  CAS  Google Scholar 

  26. Duh YS, Tsai MT, Kao CS. Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. J Therm Anal Calorim. 2017;127:983–93. https://doi.org/10.1007/s10973-016-5767-1.

    Article  CAS  Google Scholar 

  27. Golubkov AW, Scheikl S, Planteu P, Voitic G, Wiltsche H, Stangl C, Fauler G, Thaler A, Hacker V. Thermal runaway of commercial 18650 li-ion batteries with LFP and NCA cathodes-impact of charge and overcharge. RSC Adv. 2015;5:57171–86. https://doi.org/10.1039/C5RA05897J.

    Article  CAS  Google Scholar 

  28. Lammer M, Königseder A, Gluschitz P, Hacker V. Influence of aging on the heat and gas emissions from commercial lithium ion cells in case of thermal failure. J Electrochem Sci Eng. 2018;8(1):101–10. https://doi.org/10.5599/jese.476.

    Article  CAS  Google Scholar 

  29. Perea A, Paolella A, Dubé J, Champagne D, Mauger A, Zaghib K. State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells. J Power Sources. 2018;399:392–7. https://doi.org/10.1016/j.jpowsour.2018.07.112.

    Article  CAS  Google Scholar 

  30. Lammer M, Königseder A, Hacker V. Holistic methodology for characterisation of the thermally induced failure of commercially available 18650 lithium ion cells. RSC Adv. 2017;7:24425–9. https://doi.org/10.1039/C7RA02635H.

    Article  Google Scholar 

  31. Kvasha A, Gutiérrez C, Osa U, Meatza I, Blazquez JA, Macicior H, Urdampilleta I. A comparative study of thermal runaway of commercial lithium ion cells. Energy. 2018;159(159):547–57. https://doi.org/10.1016/j.energy.2018.06.173.

    Article  CAS  Google Scholar 

  32. Xu C, Feng X, Huang W, Duan Y, Chen T, Gao S, Lu L, Jiang F, Ouyang M. Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry. J Energy Storage. 2020;31: 101670. https://doi.org/10.1016/j.est.2020.101670.

    Article  Google Scholar 

  33. Roth EP. Abuse response of 18650 Li-ion cells with different cathodes using EC:EMC/LiPF6 and EC:PC:DMC/LiPF6 electrolytes. ECS Trans. 2008;11(19):19–41. https://doi.org/10.1149/1.2897969.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Science Council, R.O.C., for financial support of this study under contract No. NSC 101–2221-E-239–017-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Shan Kao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duh, YS., Lin, YC., Ho, TC. et al. Experimental study on the runaway behaviors of Panasonic 21,700 LiNi0.8Co0.15Al0.05O2 battery used in electric vehicle under thermal failure. J Therm Anal Calorim 147, 12005–12018 (2022). https://doi.org/10.1007/s10973-022-11394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11394-5

Keywords

Navigation