Skip to main content
Log in

Dynamic and thermodynamic analysis of a novel aircraft energy management system based on carbon dioxide energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With the development of aircraft electrification, the problem of thermal management has become increasingly prominent. It is necessary to propose a new aircraft energy management method to satisfy the needs of aircraft thermal management while maintaining high efficiency. This study addresses a compressed carbon dioxide energy storage system applied in aircraft energy management. Especially, this is the first time carbon dioxide has been used for aircraft energy storage. In this system, carbon dioxide can be used as a cold source to dissipate heat for the equipment. The system can also provide electrical energy for avionics, achieving combined cooling and power generation with a compact structure. Moreover, the energy storage unit increases the flexibility of the system. In this paper, the novel system is modeled and simulated. Results indicate that the system can operate stably to satisfy energy demand. The energy utilization efficiency of the system is 69% under design conditions. When the energy is stored first and then released, the exergy efficiency of the system can reach 81.66%, which has good economic benefits. The system is efficient, compact and flexible. It realizes the cascade utilization of energy while working, and simultaneously meets the energy requirements of cold, heat and electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sziroczak D, Jankovics I, Gal I, Rohacs D. Conceptual design of small aircraft with hybrid-electric propulsion systems. Energy. 2020;204:117937. https://doi.org/10.1016/j.energy.2020.117937.

    Article  Google Scholar 

  2. Reed W, Spakovsky MV, Raj P. Comparison of heat exchanger and thermal energy storage designs for aircraft thermal management systems. Aiaa Aerospace Sci Meet. 2016. https://doi.org/10.2514/6.2016-1023.

    Article  Google Scholar 

  3. Zhao H, Hou Y, Zhu Y, Chen L, Chen S. Experimental study on the performance of an aircraft environmental control system. Appl Therm Eng. 2009;29(16):3284–8. https://doi.org/10.1016/j.applthermaleng.2009.05.002.

    Article  Google Scholar 

  4. Ribeiro J, Afonso F, Ribeiro I, Ferreira B, Policarpo H, Peças P, Lau F. Environmental assessment of hybrid-electric propulsion in conceptual aircraft design. J Clean Prod. 2020;247:119477. https://doi.org/10.1016/j.jclepro.2019.119477.

    Article  Google Scholar 

  5. Riboldi CED. Energy-optimal off-design power management for hybrid-electric aircraft. Aerosp Sci Technol. 2019;95:105507. https://doi.org/10.1016/j.ast.2019.105507.

    Article  Google Scholar 

  6. Xie Y, Savvarisal AT, Zhang D, Gu J. Review of hybrid electric powered aircraft, its conceptual design and energy management methodologies. Chinese J Aeronaut. 2020;34:432–50. https://doi.org/10.1016/j.cja.2020.07.017.

    Article  Google Scholar 

  7. Brelje BJ, Martins JRRA. Electric, hybrid, and turboelectric fixed-wing aircraft: a review of concepts, models, and design approaches. Prog Aerosp Sci. 2019;104:1–19. https://doi.org/10.1016/j.paerosci.2018.06.004.

    Article  Google Scholar 

  8. Kabir R, Kaddoura K, McCluskey P, Kizito JP 2018 Investigation of a Cooling System for A Hybrid Airplane. In: 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. https://doi.org/10.2514/6.2018-4991.

  9. Rheaume J, Lents CE 2018 Design and Simulation of a Commercial Hybrid Electric Aircraft Thermal Management System. In: 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. https://doi.org/10.2514/6.2018-4994.

  10. Wang M, Mesbahi M. Energy Management for Electric Aircraft via Optimal Control: Cruise Phase. AIAA Propulsion and Energy 2020 Forum. 2020. https://doi.org/10.2514/6.2020-3565.

  11. Awais M, Kumam P, Memoona AA, Shah Z, Alrabaiah H. Impact of activation energy on hyperbolic tangent nanofluid with mixed convection rheology and entropy optimization. Alex Eng J. 2020;60:1123–35. https://doi.org/10.1016/j.aej.2020.10.036.

    Article  Google Scholar 

  12. Shah Z, Kumam P, Debani W. Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. REP SCI. 2020. https://doi.org/10.1038/s41598-020-61125-9.

    Article  Google Scholar 

  13. Figliola RS, Tipton R, Li H. Exergy approach to decision-based design of integrated aircraft thermal systems. J Aircraft. 2003;40:49–55. https://doi.org/10.2514/2.3056.

    Article  Google Scholar 

  14. Kelly S, Tsatsaronis G, Morosuk T. Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy. 2009;34:384–91. https://doi.org/10.1016/j.energy.2008.12.007.

    Article  Google Scholar 

  15. Dong Z, Li D, Wang Z, Sun M. A review on exergy analysis of aerospace power systems. Acta Astronaut. 2018;152:486–95. https://doi.org/10.1016/j.actaastro.2018.09.003.

    Article  Google Scholar 

  16. Bender D. Exergy-based analysis of aircraft environmental control systems—integration into model-based design and potential for aircraft system evaluation. In: The 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. 2016.

  17. Bender D. Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems. Energy. 2017;137:739–51. https://doi.org/10.1016/j.energy.2017.05.182.

    Article  Google Scholar 

  18. Altuntas O. Comparing different piston-prop aircraft engines with combustion efficiency and exergy. J Therm Anal Calorim. 2021;145:659–67. https://doi.org/10.1007/s10973-020-09926-y.

    Article  CAS  Google Scholar 

  19. Khan MJ, Kumam P, Alreshidi NA, Shaheen N, Kumam W, Shah Z, Thounthong P. The renewable energy source selection by remoteness index-based VIKOR Method for generalized intuitionistic fuzzy soft sets. Symmetry. 2020;12(6):977. https://doi.org/10.3390/sym12060977.

    Article  Google Scholar 

  20. Grzesik B, Liao G, Vogt D, Froböse L, Kwade A, Linke S, Stoll E. Integration of energy storage functionalities into fiber reinforced spacecraft structures. Acta Astronaut. 2020;166:172–9. https://doi.org/10.1016/j.actaastro.2019.10.009.

    Article  CAS  Google Scholar 

  21. Liao J, Jiang Y, Li J, Liao Y, Du H, Zhu W, Zhang L. An improved energy management strategy of hybrid photovoltaic/battery/fuel cell system for stratospheric airship. Acta Astronaut. 2018;152:727–39. https://doi.org/10.1016/j.actaastro.2018.09.007.

    Article  Google Scholar 

  22. Amouroux J, Siffert P, Massué JP, Cavadias S, Trujillo B, Hashimoto K, Rutberg P, Dresvin S, Wang X. Carbon dioxide: a new material for energy storage. Prog Nat Sci-Mater. 2014;24:295–304. https://doi.org/10.1016/j.pnsc.2014.06.006.

    Article  CAS  Google Scholar 

  23. Baik YJ, Heo J, Koo J, Kim M. The effect of storage temperature on the performance of a thermo-electric energy storage using a transcritical CO2 cycle. Energy. 2014;75:204–15. https://doi.org/10.1016/j.energy.2014.07.048.

    Article  CAS  Google Scholar 

  24. Mercangöz M, Hemrle J, Kaufmann L, Z’Graggen A, Ohler C. Electrothermal energy storage with transcritical CO2 cycles. Energy. 2012;45:407–15. https://doi.org/10.1016/j.energy.2012.03.013.

    Article  Google Scholar 

  25. Zhang Y, Yao E, Tian Z, Gao W, Yang K. Exergy destruction analysis of a low-temperature compressed carbon dioxide energy storage system based on conventional and advanced exergy methods. Appl Therm Eng. 2021;185:116421. https://doi.org/10.1016/j.applthermaleng.2020.116421.

    Article  CAS  Google Scholar 

  26. Tabrizi A, Niazmand H, Farzaneh-Gord M, Ebrahimi-Moghadam A. Energy, exergy and economic analysis of utilizing the supercritical CO2 recompression Brayton cycle integrated with solar energy in natural gas city gate station. J Therm Anal Calorim. 2021;145:973–91. https://doi.org/10.1007/s10973-020-10241-9.

    Article  CAS  Google Scholar 

  27. Abdollahpour A, Ghasempour R, Kasaeian A, Ahmadi MH. Exergoeconomic analysis and optimization of a transcritical CO 2 power cycle driven by solar energy based on nanofluid with liquefied natural gas as its heat sink. J Therm Anal Calorim. 2020;139(1):451–73. https://doi.org/10.1007/s10973-019-08357-6.

    Article  CAS  Google Scholar 

  28. Xu M, Zhao P, Huo Y, Han J, Wang J, Dai Y. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system. J Clean Prod. 2020;242:118437. https://doi.org/10.1016/j.jclepro.2019.118437.

    Article  CAS  Google Scholar 

  29. Wang M, Zhao P, Wu Y, Dai Y. Performance analysis of a novel energy storage system based on liquid carbon dioxide. Appl Therm Eng. 2015;91:812–23. https://doi.org/10.1016/j.applthermaleng.2015.08.081.

    Article  CAS  Google Scholar 

  30. Wang M, Zhao P, Yang Y, Dai Y. Performance analysis of energy storage system based on liquid carbon dioxide with different configurations. Energy. 2015;93:1931–42. https://doi.org/10.1016/j.energy.2015.10.075.

    Article  CAS  Google Scholar 

  31. Zhang Y, Yang K, Li X, Xu J. Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage. Energy. 2014;77:460–77. https://doi.org/10.1016/j.energy.2014.09.030.

    Article  Google Scholar 

  32. Yang K, Zhang Y, Li X, Xu J. Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system. Energ Convers Manage. 2014;86:1031–44. https://doi.org/10.1016/j.enconman.2014.06.062.

    Article  Google Scholar 

  33. Zhang C, Yan B, Wieberdink J, Li PY, Van de VenLoth JDE, Simon TW. Thermal analysis of a compressor for application to compressed air energy storage. Appl Therm Eng. 2014;73(2):1402–11. https://doi.org/10.1016/j.applthermaleng.2014.08.014.

    Article  Google Scholar 

  34. Zhang Y, Yang K, Li X, Xu J. The thermodynamic effect of thermal energy storage on compressed air energy storage system. Renew Energ. 2013;50:227–35. https://doi.org/10.1016/j.renene.2012.06.052.

    Article  Google Scholar 

  35. Zhang J, Zhou S, Song W, Feng Z. Performance analysis of a compressed liquid carbon dioxide energy storage system. Energy Procedia. 2018;152:168–73. https://doi.org/10.1016/j.egypro.2018.09.076.

    Article  CAS  Google Scholar 

  36. Zhang Y, Yang K, Hong H, Zhong X, Xu J. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid. Renew Energ. 2016;99:682–97. https://doi.org/10.1016/j.renene.2016.07.048.

    Article  CAS  Google Scholar 

  37. He Q, Liu H, Hao Y, Liu Y, Liu W. Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis. Renew Energ. 2018;127:835–49. https://doi.org/10.1016/j.renene.2018.05.005.

    Article  CAS  Google Scholar 

  38. Liu Z, Cao F, Guo J, Liu J, Zhai H, Duan Z. Performance analysis of a novel combined cooling, heating and power system based on carbon dioxide energy storage. Energ Convers Manage. 2019;188:151–61. https://doi.org/10.1016/j.enconman.2019.03.031.

    Article  CAS  Google Scholar 

  39. Liu Z, Liu B, Guo J, Xin X, Yang X. Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system. Energ Convers Manage. 2019;198:111807. https://doi.org/10.1016/j.enconman.2019.111807.

    Article  CAS  Google Scholar 

  40. Musharavati F, Khanmohammadi S, Pakseresht A, Khanmohammadi S. Comparative analysis and multi-criteria optimization of a supercritical recompression CO2 Brayton cycle integrated with thermoelectric modules. J Therm Anal Calorim. 2020;149:769–85. https://doi.org/10.1007/s10973-020-10153-8.

    Article  CAS  Google Scholar 

  41. Li Y, Lee K. Thermohydraulic dynamics and fuzzy coordination control of a microchannel cooling network for space electronics. IEEE T Ind Electron. 2011;58(2):700–8. https://doi.org/10.1109/TIE.2010.2045999.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chengdu Aircraft Design and Research Institute under grant KH52-4726-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Ze Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, YZ., Yang, L. et al. Dynamic and thermodynamic analysis of a novel aircraft energy management system based on carbon dioxide energy storage. J Therm Anal Calorim 147, 10717–10731 (2022). https://doi.org/10.1007/s10973-022-11270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11270-2

Keywords

Navigation