Skip to main content
Log in

Optimization of blade geometry by neural network in natural convection and entropy generation of nanofluids within an oblique square cavity with the effects of volumetric radiation with LB method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current paper, the impacts of the blade on the heat transfer rate (HTR) and entropy production (EP) of nanofluids (NFs) inside an oblique square cavity exposed to a magnetic field (MF) and the impacts of radiation are investigated numerically. The blade fixed on a left horizontal wall with thermal conductivity (TC). The D2Q9 lattice Boltzmann (LB) technique is used to solve the governing equations. The impact of cavity angle, length, width blade, radiation parameter on EP and HTR has been investigated. According to the accurate results obtained from artificial neural networks (ANNs) in predicting values, the use of this method in predicting values has been considered. In this method, by having a limited number of input data and their desired output, the network can be trained in such a way that for a wide range of input data, the desired output can be predicted with great accuracy. The results show that increasing the cavity angle at low Rayleigh numbers (Ra) does not have a significant impact on HTR, EP and Bejan number (Be). As the blade width increases, the average Nusselt number (Nu) and EP reduce. While increasing the blade length, this process first increases and then decreases. As the blade length or width increases, the Be increases. The increase in HTR is more dramatic with the intensification of the radiation parameter in higher Rayleigh numbers. Finally, the ANN has been used to optimize the HTR. The optimization method is based on the lowest entropy value and the highest average Nu. The highest value of Nu occurs in blade length of 0.6 and blade width of 0.1 at TC of 200, which is equal to 9.45. The lowest amount of entropy production also occurs in the same condition, which is equal to 3.57.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dogonchi A, Ismael MA, Chamkha AJ, Ganji D. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2018;135(6):3845–34.

    Google Scholar 

  2. Yang M, Kong Q, Feng W, Yao W, Wang Q. Caged biomass carbon with anchoring MoO2/NC Nanospheres: synergistic enhancement of potassium ion storage and electrochemical performance. Appl Surf Sci. 2021;569: 150984. https://doi.org/10.1016/j.apsusc.2021.150984.

    Article  CAS  Google Scholar 

  3. Wang X, Li C, Zhang Y, Said Z, Debnath S, Sharma S, Yang M, Gao T. Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. Int J Adv Manuf Technol. 2021. https://doi.org/10.1007/s00170-021-08235-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT–Fe 3 O 4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2018;135(6):3029–30.

    Google Scholar 

  5. Ding H, Bao X, Jamili-Shirvan Z, Jin J, Deng L, Yao K, Gong P, Wang X. Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles. Materials Design. 2021;210:110108.

    CAS  Google Scholar 

  6. Hu M, Wang Y, Yan Z, Zhao G, Zhao Y, Xia L, Cheng B, Di Y, Zhuang X. Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with a high filtration efficiency, low air resistance and high moisture permeation. J Mater Chem A, Mater Energy Sustain. 2021;9(24):14093–141. https://doi.org/10.1039/D1TA01505B.

    Article  CAS  Google Scholar 

  7. Astanina M, Abu-Nada E, Sheremet M. Combined effects of thermophoresis, brownian motion, and nanofluid variable properties on CuO-water nanofluid natural convection in a partially heated square cavity. J Heat Trans. 2018;140:082401.

    Google Scholar 

  8. Khanafer K, AlAmiri A, Bull J. Laminar natural convection heat transfer in a differentially heated cavity with a thin porous fin attached to the hot wall. Int J Heat Mass Transf. 2015;87:59–70.

    Google Scholar 

  9. Bilgen E. Natural convection in cavities with a thin fin on the hot wall. Int J Heat Mass Transf. 2005;48:3493–505.

    CAS  Google Scholar 

  10. Chen H-T, Lin M-C, Chang J-R. Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall. Int J Heat Mass Trans. 2018;124:1217–29.

    Google Scholar 

  11. Aghakhani S, Pordanjani AH, Afrand M, Sharifpur M, Meyer JP. Natural convective heat transfer and entropy generation of alumina/water nanofluid in a tilted enclosure with an elliptic constant temperature: applying magnetic field and radiation effects. Int J Mech Sci. 2020;174:105470.

    Google Scholar 

  12. Zhang Y, Xie G, Karimipour A. Comprehensive analysis on the effect of asymmetric heat fluxes on microchannel slip flow and heat transfer via a lattice Boltzmann method. Int Comm Heat Mass Trans. 2020;118:104856.

    Google Scholar 

  13. Nazarafkan H, Mehmandoust B, Toghraie D, Karimipour A. Numerical study of natural convection of nanofluid in a semi-circular cavity with lattice Boltzmann method. Int J Num Methods Heat Fluid Flow. 2019;30(5):2625–6.

    Google Scholar 

  14. D’Orazio A, Karimipour A. A useful case study to develop lattice Boltzmann method performance: Gravity effects on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition. Int J Heat Mass Trans. 2019;136:1017–10.

    Google Scholar 

  15. Karimipour A, D’Orazio A, Goodarzi M. Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux. Phys A: Statis Mech Appli. 2018;509:729–74.

    CAS  Google Scholar 

  16. Mozaffari M, Karimipour A, D’Orazio A. Increase lattice Boltzmann method ability to simulate slip flow regimes with dispersed CNTs nanoadditives inside. J Therm Anal Calorim. 2019;137:229–24.

    CAS  Google Scholar 

  17. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Conjugate natural convection of Al2O3–water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. IntJ Mech Sci. 2019;136:200–21.

    Google Scholar 

  18. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-Law Non-Newtonian fluid in a C-shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;176:51–67.

    Google Scholar 

  19. Afrand M, Toghraie D, Karimipour A, Wongwises S. A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater. 2017;430:22–8.

    CAS  Google Scholar 

  20. Afrand M, Pordanjani AH, Aghakhani S, Oztop HF, Abu-Hamdeh N. Free convection and entropy generation of a nanofluid in a tilted triangular cavity exposed to a magnetic field with sinusoidal wall temperature distribution considering radiation effects. Int Comm Heat Mass Trans. 2020;112:104507.

    CAS  Google Scholar 

  21. Afrand M. Using a magnetic field to reduce natural convection in a vertical cylindrical annulus. Int J Therm Sci. 2017;118:12–23.

    Google Scholar 

  22. Sivaraj C, Sheremet MA. MHD natural convection and entropy generation of ferrofluids in a cavity with a non-uniformly heated horizontal plate. Int J Mech Sci. 2018;149:326–33.

    Google Scholar 

  23. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Thermal Anal Calorim. 2018;135(6):3197–32.

    Google Scholar 

  24. Selimefendigil F, Öztop HF. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77.

    CAS  Google Scholar 

  25. Nguyen Q, Beni MH, Parsian A, Malekahmadi O, Karimipour A. Discrete ordinates thermal radiation with mixed convection to involve nanoparticles absorption, scattering and dispersion along radiation beams through the nanofluid. J Thermal Anal Calorim. 2021;143:2801–28.

    CAS  Google Scholar 

  26. Hayat T, Qayyum S, Imtiaz M, Alsaedi A. Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. Int J Heat Mass Transf. 2016;102:723–73.

    CAS  Google Scholar 

  27. Ramesh N, Venkateshan S. Effect of surface radiation and partition resistance on natural convection heat transfer in a partitioned enclosure: an experimental study. J Heat Transfer. 1999;121:616–62.

    CAS  Google Scholar 

  28. Yücel A, Acharya S, Williams M. Natural convection and radiation in a square enclosure. Numerical Heat Transfer. 1989;15:261–27.

    Google Scholar 

  29. Slimi K, Zili-Ghedira L, Ben Nasrallah S, Mohamad A. A transient study of coupled natural convection and radiation in a porous vertical channel using the finite-volume method. Numerical Heat Transfer, Part A: Appli. 2004;45:451–47.

    Google Scholar 

  30. Karimipour A. A novel case study for thermal radiation through a nanofluid as a semitransparent medium via discrete ordinates method to consider the absorption and scattering of nanoparticles along the radiation beams coupled with natural convection. Int Commun Heat Mass Transfer. 2017;87:256–26.

    CAS  Google Scholar 

  31. Safaei MR, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Physica A: Statis Mech Appli. 2018;509:515–53.

    CAS  Google Scholar 

  32. Sheremet MA, Pop I. Natural convection combined with thermal radiation in a square cavity filled with a viscoelastic fluid. Int J Numer Meth Heat Fluid Flow. 2018;28:624–40.

    Google Scholar 

  33. Bejan A. Second law analysis in heat transfer. Energy. 1980;5:720–32.

    Google Scholar 

  34. A. Bejan, 1982 Entropy generation through heat and fluid flow: Wiley.

  35. Mukhopadhyay A. Analysis of entropy generation due to natural convection in square enclosures with multiple discrete heat sources. Int Commun Heat Mass Transfer. 2010;37:867–72.

    Google Scholar 

  36. Kefayati GR, Tang H. Double-diffusive natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part I: Heat and mass transfer). Int J Heat Mass Transf. 2018;120:731–50.

    Google Scholar 

  37. Shahi M, Mahmoudi A H, Talebi F. Entropy generation due to natural convection cooling of a horizontal heat source mounted inside a square cavity filled with nanofluid. Heat Transfer Research. 2012;43(1):19–46. https://doi.org/10.1615/HeatTransRes.2012003373.

    Article  Google Scholar 

  38. Khorasanizadeh H, Amani J, Nikfar M. Numerical investigation of Cu-water nanofluid natural convection and entropy generation within a cavity with an embedded conductive baffle. Scientia Iranica. 2012;19:1996–20.

    Google Scholar 

  39. Yan S-R, Aghakhani S, Karimipour A. Influence of a membrane on nanofluid heat transfer and irreversibilities inside a cavity with two constant-temperature semicircular sources on the lower wall: applicable to solar collectors. Physica Scripta. 2020;95(8):085702.

    CAS  Google Scholar 

  40. Siavashi M, Yousofvand R, Rezanejad S. Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv Powder Technol. 2018;29:142–15.

    CAS  Google Scholar 

  41. Alsabery A, Ishak M, Chamkha A, Hashim I. Entropy generation analysis and natural convection in a nanofluid-filled square cavity with a concentric solid insert and different temperature distributions. Entropy. 2018;20:336.

    PubMed Central  Google Scholar 

  42. Mozaffari M, D’Orazio A, Karimipour A, Abdollahi A, Safaei MR. Lattice Boltzmann method to simulate convection heat transfer in a microchannel under heat flux: gravity and inclination angle on slip-velocity. Int J Numerical Methods Heat Fluid Flow. 2019;30(6):3371–33.

    Google Scholar 

  43. Zhang Y, Xie G, Karimipour A, Sundén B. LBM modeling and analysis on microchannel slip flow and heat transfer under different heating conditions. Numerical Heat Transfer, Part A: Appli. 2020;78:159–17.

    CAS  Google Scholar 

  44. Goodarzi M, D’Orazio A, Keshavarzi A, Mousavi S, Karimipour A. Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: pure natural convection & mixed convection. Phys A: Statis Mech Appli. 2018;509:210–23.

    CAS  Google Scholar 

  45. D’Orazio A, Karimipour A, Mosavi A. Develop lattice Boltzmann method and its related boundary conditions models for the benchmark oscillating walls by modifying hydrodynamic and thermal distribution functions. Eur Phys J Plus. 2020;135:1–18.

    Google Scholar 

  46. Yu D, Mei R, Luo L-S, Shyy W. Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci. 2003;39:329–36.

    Google Scholar 

  47. He X, Luo L-S. Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E. 1997;56:6811.

    CAS  Google Scholar 

  48. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–46.

    CAS  Google Scholar 

  49. Hassani S, Saidur R, Mekhilef S, Hepbasli A. A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis. Int J Heat Mass Transf. 2015;90:121–30.

    CAS  Google Scholar 

  50. J. C. Maxwell and J. J. Thompson, 1904 A treatise on electricity and magnetism 2: Clarendon.

  51. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–57.

    CAS  Google Scholar 

  52. Ghasemi B, Aminossadati S, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–17.

    CAS  Google Scholar 

  53. Vahedi SM, Pordanjani AH, Raisi A, Chamkha AJ. Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge. Eur Phys J Plus. 2019;134:12.

    Google Scholar 

  54. Zhang X, Tang Y, Zhang F, Lee C. A novel aluminum-graphite dual-ion battery. Adv Energy Mater. 2016;6(11):1502588. https://doi.org/10.1002/aenm.201502588.

    Article  CAS  Google Scholar 

  55. Vahedi SM, Pordanjani AH, Wongwises S, Afrand M. On the role of enclosure side walls thickness and heater geometry in heat transfer enhancement of water–Al 2 O 3 nanofluid in presence of a magnetic field. J Therm Anal Calorim. 2019;138:679–69.

    CAS  Google Scholar 

  56. Rejvani M, Alipour A, Vahedi SM, Chamkha AJ, Wongwises S. Optimal characteristics and heat transfer efficiency of SiO2/water nanofluid for application of energy devices: A comprehensive study. Int J Energy Res. 2019;43:8548–85.

    CAS  Google Scholar 

  57. Pordanjani AH, Vahedi SM, Aghakhani S, Afrand M, Mahian O, Wang L-P. Multivariate optimization and sensitivity analyses of relevant parameters on efficiency of scraped surface heat exchanger. Appli Thermal Eng. 2020;178:115445.

    Google Scholar 

  58. Rashidi S, Bovand M, Esfahani JA. Sensitivity Analysis for Entropy Generation in Porous Solar Heat Exchangers by RSM. J Thermophys Heat Trans. 2016;31:390–40.

    Google Scholar 

  59. Rashidi S, Bovand M, Esfahani JA. Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis. Energy Convers Manage. 2015;103:726–38.

    Google Scholar 

  60. Murlidhar BR, Sinha RK, Mohamad ET, Sonkar R, Khorami M. The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity. Int J Hydromech. 2020;3(1):69–87.

    Google Scholar 

  61. Jiang D, Hu G, Qi G, Mazur N. A fully convolutional neural network-based regression approach for effective chemical composition analysis using near-infrared spectroscopy in cloud. J Artifi Intell Technol. 2021;1(1):74–82.

    Google Scholar 

  62. Kandilli C, Mertoglu B. Optimisation design and operation parameters of a photovoltaic thermal system integrated with natural zeolite. Int J Hydromech. 2020;3(2):128–39.

    Google Scholar 

  63. Rashidi S, Bovand M, Esfahani JA. Optimization of partitioning inside a single slope solar still for performance improvement. Desalination. 2016;395:79–91.

    CAS  Google Scholar 

  64. Mamourian M, Milani Shirvan K, Pop I. Sensitivity analysis for MHD effects and inclination angles on natural convection heat transfer and entropy generation of Al2O3-water nanofluid in square cavity by response surface methodology. Int Commun Heat Mass Transf. 2016;79:46–57.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored in part by Welfare Research Program of Zhejiang Province (LGG20E050001);Zhejiang Province Science Foundation(Q20E060028); Ningbo "Belt And Road" Key Project of Vocational Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingge Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zheng, Z., Zhu, L. et al. Optimization of blade geometry by neural network in natural convection and entropy generation of nanofluids within an oblique square cavity with the effects of volumetric radiation with LB method. J Therm Anal Calorim 147, 10827–10843 (2022). https://doi.org/10.1007/s10973-022-11252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11252-4

Keywords

Navigation