Skip to main content
Log in

Tray drying characteristics of Musa splendida and Musa balbisiana Colla psuedo-stem

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article targets the optimal process–product characteristics of periodic airflow assisted tray dried Kaskal (Musa splendida) and Posola (Musa balbisiana Colla pseudo-stem). Both trial and error and statistical design approaches have been considered to compare and contrast optimal process parametric and response variable characteristics of the mentioned dried vegetable samples. Based on the carried investigations, optimal process and response variable data were achieved for the statistical design-based approach. Drying kinetics studies affirmed moisture diffusivities to vary from 1.56 × 10–11–7.59 × 10–11 m2 s−1 and 1.79 × 10–11–7.35 × 10–11 m2 s−1 for Kaskal and Posola, respectively. For the Kaskal vegetable system, the RSM-based optimal tray drying process and response variables correspond to 58.66 °C, 400.31 min, 5.09%, 80.73 mg (100 g)−1 and 72.34% for drying temperature, drying time, moisture content, vitamin C content and antioxidant activity for Kaskal. Corresponding values for the tray dried Posola refer to 57.59 °C, 389.42 min., 2.84%, 53.38 mg (100 g)−1 and 25.72%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Olumba C, Onunka C. Banana and plantain in West Africa: production and marketing. Afr J Food Agric Nutr Dev. 2020;20(2):15474–89.

    Google Scholar 

  2. Mondal IH, Rangan L, Uppaluri RV. Effect of oven and intermittent airflow assisted tray drying methods on nutritional parameters of few leafy and non-leafy vegetables of North-East India. Heliyon. 2019;5(11):e02934.

    Article  Google Scholar 

  3. Ma J, Srzednicki G, Arcot J. Effects of drying on stability of nutrients in Banana Pseudostem in species Musa balbisiana and Musa acuminata. J Food Process Preserv. 2016;41(1):1–9.

    Google Scholar 

  4. Odenigbo M, Asumugha V, Ubbor S, Nwauzor C, Otuonye A, Offia-Olua B, et al. Proximate composition and consumption pattern of plantain and cooking-banana. Curr J Appl Sci Technol. 2013;23:1035–43.

    Google Scholar 

  5. Bhaskar JJ, Chilkunda ND, Salimath PV. Banana (Musa sp. var. elakki bale) flower and pseudostem: dietary fiber and associated antioxidant capacity. J Agric Food Chem. 2012;60(1):427–32.

    Article  CAS  Google Scholar 

  6. Tiroutchelvame D, Pragalyaashree M, Peter D. Process development for the value addition of banana central core (pseudo stem). Int J Recent Technol Eng. 2019;8(4):1055.

    Google Scholar 

  7. Biernacka B, Dziki D, Różyło R, Gawlik-Dziki U. Banana powder as an additive to common wheat pasta. Foods. 2020;9(1):53.

    Article  CAS  Google Scholar 

  8. Mui WW, Durance TD, Scaman CH. Flavor and texture of banana chips dried by combinations of hot air, vacuum, and microwave processing. J Agric Food Chem. 2002;50(7):1883–9.

    Article  CAS  Google Scholar 

  9. Anurag R, Chauhan N. Development of banana chips using different drying methods and pretreatments. Int J Chem Studies. 2018;6(4):3120–3.

    CAS  Google Scholar 

  10. John SG, Sangamithra A, Veerapandian C, Sasikala S, Sanju V. Mathematical modelling of the thin layer drying of banana blossoms. J Nutr Health Food Eng. 2014;1(1):42–9.

    Google Scholar 

  11. Adeboye O, Iyanda R, Yusuf K, Olaniyan A, Oje K. Effects of temperature, pretreatment and slice orientation on the drying rate and post drying qualities of green plantain (Musa Paradisiaca). Int J Technol Enhanc Emerg Eng Res. 2014;2(7):92–9.

    Google Scholar 

  12. Jha AK, Sit N. Drying characteristics and kinetics of colour change and degradation of phytocomponents and antioxidant activity during convective drying of deseeded Terminalia chebula fruit. J Food Meas Charact. 2020;14(4):2067–77.

    Article  Google Scholar 

  13. Zahoor I, Khan MA. Microwave assisted convective drying of bitter gourd: drying kinetics and effect on ascorbic acid, total phenolics and antioxidant activity. J Food Meas Charact. 2019;13(3):2481–90.

    Article  Google Scholar 

  14. Ouyang M, Cao S, Huang Y, Wang Y. Phenolics and ascorbic acid in pumpkin (Cucurbita maxima) slices: effects of hot air drying and degradation kinetics. J Food Meas Charact. 2020;15:1–9.

    Google Scholar 

  15. Jiang D, Xiao H, Zielinska M, Zhu G, Bai T, Zheng Z. Effect of pulsed vacuum drying on drying kinetics and quality of roots of Panax notoginseng (Burk.) FH Chen (Araliaceae). Dry Technol. 2020;25:1–18.

    Google Scholar 

  16. Sufer O, Palazoglu TK. A study on hot-air drying of pomegranate Kinetics of dehydration, rehydration and effects on bioactive compounds. J Therm Anal and Calorim. 2019;137(6):1981–90.

    Article  CAS  Google Scholar 

  17. Song XD, Mujumdar AS, Law CL, Fang XM, Peng WJ, Deng LZ, et al. Effect of drying air temperature on drying kinetics, color, carotenoid content, antioxidant capacity and oxidation of fat for lotus pollen. Dry Technol. 2020;38(9):1151–64.

    Article  CAS  Google Scholar 

  18. Alam MR, Lyng JG, Frontuto D, Marra F, Cinquanta L. Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. J Food Sci. 2018;83(8):2159–66.

    Article  CAS  Google Scholar 

  19. Suvarnakuta P, Devahastin S, Mujumdar AS. Drying kinetics and β-carotene degradation in carrot undergoing different drying processes. J Food Sci. 2005;70(8):520–6.

    Article  Google Scholar 

  20. Guiné RP, Pinho S, Barroca MJ. Study of the convective drying of pumpkin (Cucurbita maxima). Food Bioprod Process. 2011;89(4):422–8.

    Article  Google Scholar 

  21. Potosí-Calvache DC, Vanegas-Mahecha P, Martínez-Correa HA. Convective drying of squash (Cucurbita moschata): influence of temperature and air velocity on effective moisture diffusivity, carotenoid content and total phenols. Dyna. 2017;84(202):112–9.

    Article  Google Scholar 

  22. Olawoye BT, Kadiri O, Babalola TR. Modelling of thin-layer drying characteristic of unripe Cardaba banana (Musa ABB) slices. Cogent Food Agric. 2017;3(1):1290013.

    Article  Google Scholar 

  23. Gharehbeglou P, Askari B, Rad AH, Hoseini SS, Pour HT, Rad AHE. Investigating of drying kinetics and mathematical modeling of turnip. Agric Eng Int: CIGR J. 2014;16(3):194–204.

    Google Scholar 

  24. Gupta MK, Sehgal V, Arora S. Optimization of drying process parameters for cauliflower drying. J Food Sci Technol. 2013;50(1):62–9.

    Article  Google Scholar 

  25. Abano E, Ma H, Qu W. Optimization of drying conditions for quality dried tomato slices using response surface methodology. J Food Process Preserv. 2014;38(3):996–1009.

    Article  CAS  Google Scholar 

  26. Jalgaonkar K, Mahawar MK, Vishwakarma RK, Shivhare US, Nambi VE. Optimization of process condition for preparation of sapota bar using Refractance window drying method. Dry Technol. 2020;38(3):269–78.

    Article  CAS  Google Scholar 

  27. Šumić Z, Tepić A, Vidović S, Vakula A, Vladić J, Pavlić B. Process optimization of chanterelle (cantharellus cibarius) mushrooms vacuum drying. J Food Process Preserv. 2017;41(2):e12822.

    Article  Google Scholar 

  28. Mondal IH, Rangan L, Uppaluri RV. Process-product characteristics of tray-dried Benincasa hispida. J Food Process Preserv. 2020;44(9):e14697.

    Article  CAS  Google Scholar 

  29. AOAC. Officials methods of analysis. 17th ed. Washington: Association of Official Analytical Chemists; 2010.

    Google Scholar 

  30. Ravula SR, Munagala SR, Arepally D, Reddy P. Mathematical modelling and estimation of effective moisture diffusivity, activation energy, energy and exergy analysis of thin layer drying of pineapple. J Exp Biol. 2017;5(3):392–401.

    CAS  Google Scholar 

  31. Anjali KM, Singh N, Pal K. Effect of sulphur dioxide on plant biochemicals. Int J Pharma Prof Res. 2012;3(2):538–44.

    Google Scholar 

  32. Barimah J, Yanney P, Laryea D, Quarcoo C. Effect of drying methods on phytochemicals, antioxidant activity and total phenolic content of dandelion leaves. Am J Food Nutr. 2017;5(4):136–41.

    CAS  Google Scholar 

  33. Sana H, Rani AS, Sulakshana G. Determination of antioxidant potential in Spilanthes acmella using DPPH assay. Int J Curr Microbiol Appl Sci. 2014;3(7):219–23.

    Google Scholar 

  34. Sochor J, Zitka O, Skutkova H, Pavlik D, Babula P, Krska B, et al. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules. 2010;15(9):6285–305.

    Article  CAS  Google Scholar 

  35. Zogzas N, Maroulis Z, Marinos-Kouris D. Moisture diffusivity data compilation in foodstuffs. Dry Technol. 1996;14(10):2225–53.

    Article  CAS  Google Scholar 

  36. Mwithiga G, Olwal JO. The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. J Food Eng. 2005;71(4):373–8.

    Article  Google Scholar 

  37. Thankitsunthorn S, Thawornphiphatdit C, Laohaprasit N, Srzednicki G. Effects of drying temperature on quality of dried Indian gooseberry powder. Int Food Res J. 2009;16(3):355–61.

    Google Scholar 

  38. Ekorong FJAA, Zomegni G, Desobgo SCZ, Ndjouenkeu R. Optimization of drying parameters for mango seed kernels using central composite design. Bioresour Bioprocess. 2015;2(8):1–9.

    Google Scholar 

  39. Juhari N, Lasekan O, Kharidah M, Ab KS. Optimization of hot-air drying conditions on the physicochemical characteristics of torch ginger (Etlingera elatior). J Food Agric Environ. 2012;10(2):64–72.

    Google Scholar 

  40. Erbay Z, Icier F. Optimization of hot air drying of olive leaves using response surface methodology. J Food Eng. 2009;91(4):533–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Imdadul Hoque Mondal sincerely thanks Ministry of Human Resource Development (MHRD), Govt. of India for fellowship. All the authors also thank School of Agro and Rural Technology, IIT Guwahati for providing all necessary infrastructural and monetary support.

Funding

This study was not funded by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by IHM. The first draft of the manuscript was written by IHM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramagopal V. S. Uppaluri.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors. Consent to participate is not applicable.

Consent for publication

Not applicable.

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, I.H., Rangan, L. & Uppaluri, R.V.S. Tray drying characteristics of Musa splendida and Musa balbisiana Colla psuedo-stem. J Therm Anal Calorim 147, 8743–8756 (2022). https://doi.org/10.1007/s10973-021-11183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11183-6

Keywords

Navigation