Skip to main content
Log in

Thermal conductivity, mechanical properties and thermomechanical analysis of fiber composite laminates with BN coating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the modified h-BN coating was coated on the prepreg sheets; then, the carbon fiber/epoxy composite laminates were prepared by compression molding. The through-thickness thermal conductivity, mechanical and thermomechanical properties of the laminates were studied, respectively. The results show that h-BN particles, which are flaky shape with a diameter of about 0.6 μm and thickness of about 70 nm, have been evenly incorporated into the composites, and the thermal stability, through-thickness thermal conductivity, impact strength and glass transition temperature (Tg) of the composites are improved accordingly. When the BN content is 10 m%, the initial thermal degradation temperature (Tinitial) of the prepreg is 370 ℃, which is 10 ℃ higher than that of unmodified prepreg. When the BN content is 7 m%, the thermal conductivity of the laminates reaches 0.9 and 1.0 W·m−1·K−1 at 25 and 100 ℃, respectively, which are 114% and 111% higher than that of pure laminate. When the content of BN is 5 m%, the impact strength of the laminate reaches the highest value of 225 kJ·m−2, which is 15.4% higher than that of pure laminate. BN particles form a dense heat conduction network, thus delaying the thermal degradation of the resin and improving the thermal conductivity. This study provides a facile path to fabricate composite laminates with the integrated structure and function.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yuan XM, Zhu B, Cai X, Liu JJ, Qiao K, Yu JW. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing. Appl Surf Sci. 2017;401:414–23. https://doi.org/10.1016/j.apsusc.2016.12.234.

    Article  CAS  Google Scholar 

  2. Dong K, Gu BH, Sun BZ. Comparisons of thermal conductive behaviors of epoxy resin in unidirectional composite materials. J Therm Anal Calorim. 2016;124:775–89. https://doi.org/10.1007/s10973-015-5197-5.

    Article  CAS  Google Scholar 

  3. Causse N, Benchimol S, Martineau L, Carponcin D, Lonjon A, Fogel M, Dandurand J, Dantras E, Lacabanne C. Polymerization study and rheological behavior of a RTM6 epoxy resin system during preprocessing step. J Therm Anal Calorim. 2015;119:329–36. https://doi.org/10.1007/s10973-014-4147-y.

    Article  CAS  Google Scholar 

  4. Takizawa Y, Chung DDL. Through-thickness thermal conduction in glass fiber polymer-matrix composites and its enhancement by composite modification. J Mater Sci. 2016;51:3463–80. https://doi.org/10.1007/s10853-015-9665-x.

    Article  CAS  Google Scholar 

  5. Sprenger S, Kothmann MH, Altstaedt V. Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Compos Sci Technol. 2014;105:86–95. https://doi.org/10.1016/j.compscitech.2014.10.003.

    Article  CAS  Google Scholar 

  6. Ge MN, Zhang JF, Zhao CL, Lu C, Du GX. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates. Mater Des. 2019;182: 108028. https://doi.org/10.1016/j.matdes.2019.108028.

    Article  CAS  Google Scholar 

  7. Mun SY, Lim HM, Lee DJ. Thermal conductivity of a silicon carbide/pitch-based carbon fiber-epoxy composite. Thermochim Acta. 2015;619:16–9. https://doi.org/10.1016/j.tca.2015.09.020.

    Article  CAS  Google Scholar 

  8. Tang L, He MK, Na XY, Guan XF, Zhang RH, Zhang JL, Gu JW. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos Commun. 2019;16:5–10. https://doi.org/10.1016/j.coco.2019.08.007.

    Article  Google Scholar 

  9. Zhao GX, Liu HY, Du XS, Zhou H, Pan Z, Mai YW, Jia YY, Yan WY. Flame synthesis of carbon nanotubes on glass fibre fabrics and their enhancement in electrical and thermal properties of glass fibre/epoxy composites. Compos Part B-Eng. 2020;198: 108249. https://doi.org/10.1016/j.compositesb.2020.108249.

    Article  CAS  Google Scholar 

  10. Kim SH, Heo YJ, Park M, Min BG, Rhee KY, Park SJ. Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites. Compos Part B-Eng. 2018;153:9–16. https://doi.org/10.1016/j.compositesb.2018.07.022.

    Article  CAS  Google Scholar 

  11. Wu YC, Yu ZQ. Thermal conductivity of in situ epoxy composites filled with ZrB2 particles. Compos Sci Technol. 2015;107:61–6. https://doi.org/10.1016/j.compscitech.2014.12.007.

    Article  CAS  Google Scholar 

  12. Siddiqui NA, Khan SU, Ma PC, Li CY, Kim JK. Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Compos Part A. 2011;42(10):1412–20. https://doi.org/10.1016/j.compositesa.2011.06.005.

    Article  CAS  Google Scholar 

  13. Han SJ, Lin JT, Yamada Y, Chung DDL. Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer–matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon. 2008;46:1060–71. https://doi.org/10.1016/j.carbon.2008.03.023.

    Article  CAS  Google Scholar 

  14. Wang YF, Chang ZC, Gao K, Li ZW, Hou GY, Liu J, Zhang LQ. Designing high thermal conductivity of polydimethylsiloxane filled with hybrid h-BN/MoS2 via molecular dynamics simulation. Polymer. 2021;224: 123697. https://doi.org/10.1016/j.polymer.2021.123697.

    Article  CAS  Google Scholar 

  15. Tian CF, Yuan L, Liang GZ, Gu AJ. High thermal conductivity and flame-retardant phosphorus-free bismaleimide resin composites based on 3D porous boron nitride framework. J Mater Sci. 2019;54:7651–64. https://doi.org/10.1007/s10853-019-03318-w.

    Article  CAS  Google Scholar 

  16. Kim YJ, Oh H, Kim J. Enhanced thermal conductivity of epoxy composites using boron nitride nanoplatelets prepared by Fe3O4 assisted liquid-phase exfoliation. Ceram Int. 2019;45(18):24121–6. https://doi.org/10.1016/j.ceramint.2019.08.120.

    Article  CAS  Google Scholar 

  17. Hu JT, Huang Y, Zeng XL, Li Q, Ren LL, Sun R, Xu JB, Wong CP. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos Sci Technol. 2018;160:127–37. https://doi.org/10.1016/j.compscitech.2018.01.045.

    Article  CAS  Google Scholar 

  18. Huang TQ, Li YW, Chen M, Wu LM. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae. Compos Sci Technol. 2020;198: 108322. https://doi.org/10.1016/j.compscitech.2020.108322.

    Article  CAS  Google Scholar 

  19. Rocky KA, Islam MA, Pal A, Ghosh S, Thu K, Nasruddin Saha BB. Experimental investigation of the specific heat capacity of parent materials and composite adsorbents for adsorption heat pumps. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2019.114431.

    Article  Google Scholar 

  20. Ji JC, Chiang SW, Liu MJ, Liang X, Li J, Gan L, He YB, Li BH, Kang FY, Du HD. Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing. Thermochim Acta. 2020;690: 178649. https://doi.org/10.1016/j.tca.2020.178649.

    Article  CAS  Google Scholar 

  21. Vincent C, Silvain JF, Heintz JM, Chandra N. Effect of porosity on the thermal conductivity of copper processed by powder metallurgy. J Phys Chem Solids. 2012;73(3):499–504. https://doi.org/10.1016/j.jpcs.2011.11.033.

    Article  CAS  Google Scholar 

  22. Wu XP, Zhao JS, Rao X, Chung DDL. Carbon fiber epoxy-matrix composites with hydrothermal-carbon-coated halloysite nanotube filler exhibiting enhanced strength and thermal conductivity. Polym Composite. 2020;41:2687–703. https://doi.org/10.1002/pc.25567.

    Article  CAS  Google Scholar 

  23. Zhang L, Hou GM, Zhai W, Ai Q, Feng JK, Zhang L, Si PC, Ci LJ. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. J Alloy Compd. 2018;748:854–60. https://doi.org/10.1016/j.jallcom.2018.03.237.

    Article  CAS  Google Scholar 

  24. Rivière L, Caussé N, Lonjon A, Dantras É, Lacabanne C. Specific heat capacity and thermal conductivity of PEEK/Ag nanoparticles composites determined by modulated-temperature differential scanning calorimetry. Polym Degrad Stabil. 2016;127:98–104. https://doi.org/10.1016/j.polymdegradstab.2015.11.015.

    Article  CAS  Google Scholar 

  25. Han S, Chung DDL. Increasing the through-thickness thermal conductivity of carbon fiber polymer–matrix composite by curing pressure increase and filler incorporation. Compos Sci Technol. 2011;71(16):1944–52. https://doi.org/10.1016/j.compscitech.2011.09.011.

    Article  CAS  Google Scholar 

  26. Kandare E, Khatibi AA, Yoo S, Wang RY, Ma J, Olivier P, Gleizes N, Wang CH. Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos Pt A-Appl Sci Manuf. 2015;69:72–82. https://doi.org/10.1016/j.compositesa.2014.10.024.

    Article  CAS  Google Scholar 

  27. Santos WND, Sousa JAD, Gregorio R Jr. Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym Test. 2016;32(5):987–94. https://doi.org/10.1016/j.polymertesting.2013.05.007.

    Article  CAS  Google Scholar 

  28. Lakatos Á, Csík A, Csarnovics I. Experimental verification of thermal properties of the aerogel blanket. Case Stud Therm Eng. 2021;25: 100966. https://doi.org/10.1016/j.csite.2021.100966.

    Article  Google Scholar 

  29. Ahn HJ, Eoh YJ, Park SD, Kim ES. Thermal conductivity of polymer composites with oriented boron nitride. Thermochim Acta. 2014;590:138–44. https://doi.org/10.1016/j.tca.2014.06.029.

    Article  CAS  Google Scholar 

  30. Zheng XR, Kim S, Park CW. Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles. Compos Pt A-Appl Sci Manuf. 2019;121:449–56. https://doi.org/10.1016/j.compositesa.2019.03.030.

    Article  CAS  Google Scholar 

  31. Mishra R, Wiener J, Militky J, Petru M, Tomkova B, Novotna J. Bio-Composites reinforced with natural fibers: comparative analysis of thermal, static and dynamic-mechanical properties. Fiber Polym. 2020;21:619–27. https://doi.org/10.1007/s12221-020-9804-0.

    Article  CAS  Google Scholar 

  32. Brylka B, Schemmann M, Wood J, Böhlke T. DMA based characterization of stiffness reduction in long fiber reinforced polypropylene. Polym Test. 2018;66:296–302. https://doi.org/10.1016/j.polymertesting.2017.12.025.

    Article  CAS  Google Scholar 

  33. Wie J, Kim M, Kim J. Enhanced thermal conductivity of a polysilazane-coated A-BN/epoxy composite following surface treatment with silane coupling agents. Appl Surf Sci. 2020;529: 147091. https://doi.org/10.1016/j.apsusc.2020.147091.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51872174), the Natural Science Foundation of Shandong Province (ZR2020QE075), the Shandong Province key research and development projects (2019JMRH0213) and the Zibo City & School Integrated Development Plan Project (2018ZBXC005).

Funding

This work was funded by the National Natural Science Foundation of China (51872174), the Natural Science Foundation of Shandong Province (ZR2020QE075), the Shandong Province key research and development projects (2019JMRH0213) and the Zibo City & School Integrated Development Plan Project (2018ZBXC005).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CZ, GG, SD, CW, ZL and HT. The first draft of the manuscript was written by CZ and SD, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuhua Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Gu, G., Dong, S. et al. Thermal conductivity, mechanical properties and thermomechanical analysis of fiber composite laminates with BN coating. J Therm Anal Calorim 147, 8019–8031 (2022). https://doi.org/10.1007/s10973-021-11066-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11066-w

Keywords

Navigation