Skip to main content
Log in

Interpretation of thermal transitions and phase transformations in semi-crystalline PVDF/PEO/graphene nanocomposites characterized by modulated-temperature DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The glass transition temperature (\(T_{{\text{g}}}\)) and binodal phase transition (\(T_{{\text{b}}}\)) of poly(vinylidene fluoride)/poly(ethylene oxide)/graphene (PVDF/PEO/graphene) nanocomposites were monitored across the complete composition range by modulated-temperature differential scanning calorimetry (MTDSC) due to better sensitivity and resolution over the conventional DSC. A single glass transition temperature at different temperature regions was observed for the nanocomposites. To have a better understanding of the level of homogeneity, the variation of composition-dependent \(T_{{\text{g}}}\) was modeled through Fox, Gordon-Taylor, and Kwei equations. Kwei equation was well-fitted over the experimental data by the introduction of self-concentration concept. Additionally, changes in the apparent heat capacity (\(C_{{\text{p}}}^{\text{ap}}\)) signal at temperatures above the melting points were attributed to the phase separation. A lower critical solution temperature (LCST) phase diagram was proposed based on MTDSC which was further confirmed by scanning electron microscopy (SEM) observations and dynamic mechanical analysis (DMA). The melting and crystallization behavior of the nanocomposites were evaluated by DSC regarding the semi-crystalline nature of polymeric components and their relatively high degree of crystallinity. The findings revealed that the crystallization degree was the parameter that changed the most. The effect of graphene nanosheets and blend composition on thermal degradation was also investigated by thermogravimetric analysis (TGA).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Besco S, Lorenzetti A, Roso M, Modesti M. PA66 / PA12 / clay based nanocomposites : structure and thermal properties. Polym Adv Technol. 2011;22:1563–71.

    Article  CAS  Google Scholar 

  2. Mohamadi M, Garmabi H, Papila M. Conjugated dual phase transitions in crystalline/crystalline blend of poly(vinylidene fluoride)/poly(ethylene oxide). Polym Bull. 2017;74:2117–35.

    Article  CAS  Google Scholar 

  3. Qiu J, Xing C, Cao X, Wang H, Wang L, Zhao L, Li Y. Miscibility and double glass transition temperature depression of poly (L-lactic acid) (PLLA)/Poly (oxymethylene) (POM) blends. Macromolecules. 2013;46:5806–14.

    Article  CAS  Google Scholar 

  4. Zare Y, Garmabi H, Yop K. Structural and phase separation characterization of poly (lactic acid)/poly (ethylene oxide)/carbon nanotube nanocomposites by rheological examinations. Compos Part B. 2018;144:1–10.

    Article  CAS  Google Scholar 

  5. De Luzuriaga AR, Grande H, Pomposo JA. A theoretical investigation of polymer-nanoparticles as miscibility improvers in all-polymer nanocomposites. J Nano Res. 2008;2:105–14.

    Article  Google Scholar 

  6. Xavier P, Rao P, Bose S. Nanoparticle induced miscibility in LCST polymer blends: critically assessing the enthalpic and entropic effects. Phys Chem Chem Phys. 2016;18:47–64.

    Article  CAS  PubMed  Google Scholar 

  7. Hemmati F, Garmabi H, Modarress H. Compatibilization mechanisms of nanoclays with different surface modifiers in UCST blends: opposing effects on phase miscibility. Polymer. 2014;55:6623–33.

    Article  CAS  Google Scholar 

  8. Pakravan M, Heuzey M-C, Ajji A. Determination of phase behavior of poly(ethylene oxide) and chitosan solution blends using rheometry. Macromolecules. 2012;45:7621–33.

    Article  CAS  Google Scholar 

  9. Khoubi-Arani Z, Mohammadi N, Ghasemirad S. Concurrent determination of two opposite phase transitions in a soft polymer nanocomposite by rheology and their theoretical evaluations. Eur Polym J. 2016;84:40–53.

    Article  CAS  Google Scholar 

  10. Ellis TS. Reverse exfoliation in a polymer nanocomposite by blending with a miscible polymer. Polymer. 2003;44:6443–8.

    Article  CAS  Google Scholar 

  11. Mohamadi M, Papila M, Garmabi H, Bajestani ZG. Morphological evaluation and phase behavior of PVDF/PEO blends in the presence of graphene nanoplatelets through rheological measurements. J Appl Polym Sci. 2019;136:48017–29.

    Article  CAS  Google Scholar 

  12. Lodge TP, Wood ER, Haley JC. Two calorimetric glass transitions do not necessarily indicate immiscibility : the case of PEO/PMMA. J Polym Sci Part B Polym Phys. 2005;44:756–63.

    Article  CAS  Google Scholar 

  13. Sharma M, Madras G, Bose S. Unusual fragility and cooperativity in glass-forming and crystalline PVDF/PMMA blends in the presence of multiwall carbon nanotubes. Macromolecules. 2015;48:2740–50.

    Article  CAS  Google Scholar 

  14. Painter P, Coleman M, Pennsyl V. Self-contacts, self-concentration, and the composition dependence of the glass transition temperature in polymer mixtures. Macromolecules. 2009;42:820–9.

    Article  CAS  Google Scholar 

  15. Hou Y, Wu Q, Chen T, Sun P. Unique evolution of spatial and dynamic heterogeneities on the glass transition behavior of PVPh/PEO blends. Chinese J Polym Sci. 2012;30:900–15.

    Article  CAS  Google Scholar 

  16. Jin K, Torkelson JM. Tg and Tg breadth of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy. Polymer. 2015;65:233–42.

    Article  CAS  Google Scholar 

  17. Ugartemendia JM, Amestoy H, Sarasua JR. Complex phase behavior and state of miscibility in poly (ethylene glycol)/Poly (L-lactide-co-e-caprolactone) blends. J Polym Sci PART B Polym Phys. 2014;52:111–21.

    Article  CAS  Google Scholar 

  18. Meaurio E, Sanchez-Rexach E, Zuza E, Lejardi A, Sanchez-Camargo AdP, Sarasua JR. Predicting miscibility in polymer blends using the Bagley plot: Blends with poly(ethylene oxide). Polymer. 2017;113:295–309.

    Article  CAS  Google Scholar 

  19. Silva GG, Machado JC, Song M, Hourston DJ. Nanoheterogeneities in PEO/PMMA blends: a modulated differential scanning calorimetry approach. J Appl Polym Sci. 2000;77:2034–43.

    Article  CAS  Google Scholar 

  20. Kim JY. Phase diagrams of binary low bandgap conjugated polymer solutions and blends. Macromolecules. 2019;52:4317–28.

    Article  CAS  Google Scholar 

  21. Van LL, Gotzen N, Pieters R, Van AG, Biesemans M, Willem R, Van MB. Phase behavior in blends of ethylene oxide-propylene oxide copolymer and poly(ether sulfone) studied by modulated-temperature DSC and NMR relaxometry. Chem Eur J. 2009;15:1177–85.

    Article  CAS  Google Scholar 

  22. Verdonck E, Schaap K, Thomas LC. A discussion of the principles and applications of modulated temperature DSC (MTDSC). Int J Pharm. 1999;192:3–20.

    Article  CAS  PubMed  Google Scholar 

  23. Leyva-porras C, Cruz-alcantar P, Espinosa-sol V, Saavedra-leos MZ. Application of differential scanning calorimetry (DSc) and modulated differential scanning. Polymers. 2019;12:1–21.

    Article  CAS  Google Scholar 

  24. Bailey NA, Hay JN. The application of modulated temperature power compensation DSC to the characterization of polymer blends. J Therm Anal Calorim. 1999;56:1011–6.

    Article  CAS  Google Scholar 

  25. Hussain S, Grandy DB, Reading M, Craig DQM. A study of phase separation in peptide-loaded HPMC films using T zero-modulated temperature DSC, atomic force microscopy, and scanning electron microscopy. J Pharm Sci. 2004;93:1672–81.

    Article  CAS  PubMed  Google Scholar 

  26. Govinna N, Sadeghi I, Asatekin A, Cebe P. Thermal properties and structure of electrospun blends of PVDF with a fluorinated copolymer. J Polym Sci Part B Polym Phys. 2019;57:312–22.

    Article  CAS  Google Scholar 

  27. Lee L, Park SJ, Kim S. Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics. 2013;234:19–24.

    Article  CAS  Google Scholar 

  28. Xi J, Qiu X, Li J, Tang X, Zhu W, Chen L. PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J Power Sour. 2006;157:501–6.

    Article  CAS  Google Scholar 

  29. Xi J, Qiu X, Chen L. PVDF–PEO/ZSM-5 based composite microporous polymer electrolyte with novel pore configuration and ionic conductivity. Solid State Ionics. 2006;177:709–13.

    Article  CAS  Google Scholar 

  30. Mohamadi M, Garmabi H, Papila M. Effect of miscibility state on crystallization behavior and polymorphism in crystalline/crystalline blends of poly(vinylidene fluoride)/poly(ethylene oxide). Macromol Res. 2016;28:698–709.

    Article  CAS  Google Scholar 

  31. Hemmati F, Yousefzade O, Garmabi H. Compatibilized low-density polyethylene/linear low-density polyethylene/nanoclay nanocomposites: II opposing effects of nanofiller on quiescent and shear-induced crystallization. Adv Polym Technol. 2018;37:1345–55.

    Article  CAS  Google Scholar 

  32. Abolhasani MM, Jalali-Arani A, Nazockdast H, Guo Q. Poly(vinylidene fluoride)-acrylic rubber partially miscible blends: Crystallization within conjugated phases induce dual lamellar crystalline structure. Polymer. 2013;54:4686–701.

    Article  CAS  Google Scholar 

  33. Yang J, Pan P, Hua L, Zhu B, Dong T, Inoue Y. Polymorphic crystallization and phase transition of Poly(butylene adipate) in its miscible crystalline/crystalline blend with Poly(vinylidene fluoride). Macromolecules. 2010;43:8610–8.

    Article  CAS  Google Scholar 

  34. Chiu F-C, Chen Y-J. Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Compos Part A Appl Sci Manuf. 2015;68:62–71.

    Article  CAS  Google Scholar 

  35. Lodge TP, McLeish TCB. Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules. 2020;33:5278–84.

    Article  CAS  Google Scholar 

  36. Pan P, Shan G, Bao Y. Enhanced nucleation and crystallization of Poly(L-lactic acid) by. Ind Eng Chem Res. 2014;53:3148–56.

    Article  CAS  Google Scholar 

  37. He Z, Shi W, Chen F, Liu W, Liang Y, Han CC. Effective morphology control in an immiscible crystalline/crystalline blend by artificially selected viscoelastic phase separation pathways. Macromolecules. 2014;47:1741–8.

    Article  CAS  Google Scholar 

  38. Priya L, Jog JP. Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies. J Polym Sci Part B Polym Phys. 2002;40:1682–9.

    Article  CAS  Google Scholar 

  39. Yu C, Han L, Bao J, Shan G, Bao Y, Pan P. Polymorphic Crystallization and crystalline reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) racemic mixture influenced by blending with Poly(vinylidene fluoride). J Phys Chem B. 2016;120:8046–54.

    Article  CAS  PubMed  Google Scholar 

  40. Malik P, Castro M, Carrot C. Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications. Polym Degrad Stab. 2006;91:634–40.

    Article  CAS  Google Scholar 

  41. Costa CM, MacHiavello MNT, Ribelles JLG, Lanceros-Mendez S. Composition-dependent physical properties of poly[(vinylidene fluoride)-co-trifluoroethylene]-poly(ethylene oxide) blends. J Mater Sci. 2013;48:3494–504.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboube Mohamadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadi, M. Interpretation of thermal transitions and phase transformations in semi-crystalline PVDF/PEO/graphene nanocomposites characterized by modulated-temperature DSC. J Therm Anal Calorim 147, 6701–6712 (2022). https://doi.org/10.1007/s10973-021-10997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10997-8

Keywords

Navigation