Skip to main content
Log in

Optimal blending to improve the combustibility of biofuels: a waste-to-energy approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Increasing awareness due to climate change have been stimulating the development of renewable energies. Slow pyrolysis is considered a good method to produce high calorific value char, especially using lignin-rich sources. Along with calorific value, the ignition temperature is another important factor to classify biofuels as it is the minimum required temperature for self-sustaining combustion. Pyrolysis is responsible not only for improving the calorific value of biomass, but also for increasing its ignition, thus demanding more energy for char combustion. Therefore, the production of a char with energetic potential and improved combustibility is important. Here, chars produced at 300–700 °C and blended with biomass were evaluated according to their higher heating value (HHV) and ignition temperature by thermal analysis. The ash content of chars produced at higher temperatures limited their energetic potential. Depending on the ratio, blending char with biomass improved its combustibility without compromising its HHV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Decorato U, Debari I, Viola E, Pugliese M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: a review. Renew Sustain Energy Rev. 2018;88:326–46. https://doi.org/10.1016/j.rser.2018.02.041.

    Article  Google Scholar 

  2. Marazza D, Macrelli S, D’Angeli M, Righi S, Hornung A, Contin A. Greenhouse gas savings and energy balance of sewage sludge treated through an enhanced intermediate pyrolysis screw reactor combined with a reforming process. Waste Manag. 2019;91:42–53. https://doi.org/10.1016/j.wasman.2019.04.054.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan T, He W, Yin G, Xu S. Comparison of bio-chars formation derived from fast and slow pyrolysis of walnut shell. Fuel. 2020;261(2019):116450. https://doi.org/10.1016/j.fuel.2019.116450.

    Article  CAS  Google Scholar 

  4. Uddin MN, Techato K, Taweekun J, Rahman MM, Rasul MG, Mahlia TMI, Ashrafur SM. An overview of recent developments in biomass pyrolysis technologies. Energies. 2018. https://doi.org/10.3390/en11113115.

    Article  Google Scholar 

  5. Demirbaş A. Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convers Manage. 2003;44(9):1481–6. https://doi.org/10.1016/S0196-8904(02)00168-1.

    Article  Google Scholar 

  6. Rodriguez Correa C, Hehr T, Voglhuber-Slavinsky A, Rauscher Y, Kruse A. Pyrolysis vs hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties. J Anal Appl Pyrolysis. 2019;140:137–47. https://doi.org/10.1016/j.jaap.2019.03.007.

    Article  CAS  Google Scholar 

  7. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  8. Pereira BLC, Carneiro ADCO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. BioResources. 2013;8(3):4574–92. https://doi.org/10.15376/biores.8.3.4574-4592.

    Article  Google Scholar 

  9. de Lima ACP, Bastos DLR, Camarena MA, Bon EPS, Cammarota MC, Teixeira RSS, Gutarra MLE. Physicochemical characterization of residual biomass (seed and fiber) from açaí (Euterpe oleracea) processing and assessment of the potential for energy production and bioproducts. Biomass Convers Biorefinery. 2019. https://doi.org/10.1007/s13399-019-00551-w.

    Article  Google Scholar 

  10. Pessoa JDC, Arduin M, Martins MA, de Carvalho JEU. Characterization of Açaí (E. oleracea) fruits and its processing residues. Braz Arch Biol Technol. 2010;53(6):1451–60. https://doi.org/10.1590/S1516-89132010000600022.

    Article  Google Scholar 

  11. Sato MK, de Lima HV, Costa AN, Rodrigues S, Pedroso AJS, et al. Biochar from acai agroindustry waste: study of pyrolysis conditions. Waste Manag. 2019;96:158–67. https://doi.org/10.1016/j.wasman.2019.07.022.

    Article  CAS  PubMed  Google Scholar 

  12. Bufalino L, Guimarães AA, Silva BMDSE, De Souza RLF, De Melo ICNA, De Oliveira DNPS, Trugilho PF. Local variability of yield and physical properties of açaí waste and improvement of its energetic attributes by separation of lignocellulosic fibers and seeds. J Renew Sustain Energy. 2018;10(5):1. https://doi.org/10.1063/1.5027232.

    Article  CAS  Google Scholar 

  13. Santos LA, et al. Methane generation potential through anaerobic digestion of fruit waste. J Clean Prod. 2020;256: 120389. https://doi.org/10.1016/j.jclepro.2020.120389.

    Article  CAS  Google Scholar 

  14. Magalhães D, Kazanç F, Ferreira A, Rabaçal M, Costa M. Ignition behavior of Turkish biomass and lignite fuels at low and high heating rates. Fuel. 2017;207(x):154–64. https://doi.org/10.1016/j.fuel.2017.06.069.

    Article  CAS  Google Scholar 

  15. Basu P. Chapter 2—biomass characteristics. In: Basu P, editor. Biomass gasification and pyrolysis: practical design and theory. Boston: Academic Press; 2010. p. 27–63.

    Chapter  Google Scholar 

  16. Parshetti GK, Quek A, Betha R, Balasubramanian R. TGA—FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass ( EFB ) and coal. Fuel Process Technol. 2014;118:228–34. https://doi.org/10.1016/j.fuproc.2013.09.010.

    Article  CAS  Google Scholar 

  17. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 2005;84(5):487–94. https://doi.org/10.1016/j.fuel.2004.10.010.

    Article  CAS  Google Scholar 

  18. Malucelli LC, Silvestre GF, Carneiro J, Vasconcelos EC, Guiotoku M, Maia CMBF, Carvalho Filho MAS. Biochar higher heating value estimative using thermogravimetric analysis. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08597-8.

    Article  Google Scholar 

  19. Issac M, De Girolamo A, Dai B, Hosseini T, Zhang L. Influence of biomass blends on the particle temperature and burnout characteristics during oxy-fuel co-combustion of coal. J Energy Inst. 2019. https://doi.org/10.1016/j.joei.2019.04.0141.

    Article  Google Scholar 

  20. Lu JJ, Chen WH. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Energy. 2015;160:49–57. https://doi.org/10.1016/j.apenergy.2015.09.026.

    Article  Google Scholar 

  21. Lin Y, Ma X, Peng X, Hu S, Yu Z, Fang S. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Appl Therm Eng. 2015;91:574–82. https://doi.org/10.1016/j.applthermaleng.2015.08.064.

    Article  CAS  Google Scholar 

  22. Qiguo Y, Qi F, Hu Z. Thermogravimetric analysis of co-combustion of biomass and biochar. Thermogravim Anal Co-Combusti Biomass Biochar. 2012. https://doi.org/10.1007/s10973-012-2744-1.

    Article  Google Scholar 

  23. Mierzwa-Hersztek M, Gondek K, Jewiarz M, Dziedzic K. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. J Mater Cycles Waste Manage. 2019;21(4):786–800. https://doi.org/10.1007/s10163-019-00832-6.

    Article  CAS  Google Scholar 

  24. Mimmo T, Panzacchi P, Baratieri M, Davies CA, Tonon G. Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenerg. 2014;62:149–57. https://doi.org/10.1016/j.biombioe.2014.01.004.

    Article  CAS  Google Scholar 

  25. Atienza-Martínez M, Ábrego J, Gea G, Marías F. Pyrolysis of dairy cattle manure: evolution of char characteristics. J Anal Appl Pyrolysis. 2019. https://doi.org/10.1016/j.jaap.2019.104724.

    Article  Google Scholar 

  26. Almeida S, Crespi MS, Nozela WC, Dias DS, Silva FR, Torquato LDM, Ribeiro CA, Marchi MRR. Food waste: energy source. J Therm Anal Calorim. 2018;134(2):1367–73.

    Article  CAS  Google Scholar 

  27. Cruz G, Crnkovic PM. Investigation into the kinetic behavior of biomass combustion under N2/O2 and CO2/O2 atmospheres. J Therm Anal Calorim. 2016;123(2):1003–11. https://doi.org/10.1007/s10973-015-4908-2.

    Article  CAS  Google Scholar 

  28. Todaro L, Rita A, Cetera P, D’Auria M. Thermal treatment modifies the calorific value and ash content in some wood species. Fuel. 2015;140:1–3. https://doi.org/10.1016/j.fuel.2014.09.060.

    Article  CAS  Google Scholar 

  29. White RH. Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci. 2007;19(4):446–52.

    Google Scholar 

  30. Malucelli LC, Carneiro J, Vasconcelos EC, Magalhães WLE, Murakami FS, Carvalho MAS. Energetic potential of pyrolyzed biomass from different sources: a comparative study. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09061-3.

    Article  Google Scholar 

  31. Luiz J, Alves F, Constantino J, Da G, Davi G, Domenico MD, et al. Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics. Renew Energy. 2020. https://doi.org/10.1016/j.renene.2020.04.025.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Malucelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malucelli, L.C., Guiotoku, M., Maia, C.M.B.F. et al. Optimal blending to improve the combustibility of biofuels: a waste-to-energy approach. J Therm Anal Calorim 147, 5771–5777 (2022). https://doi.org/10.1007/s10973-021-10955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10955-4

Keywords

Navigation