Skip to main content
Log in

In-situ characterization of moisture absorption and hygroscopic swelling of an epoxy molding compound for electronic packaging

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Moisture absorption in polymer-based electronic packaging materials plays a key role in defining the reliability performance of semiconductor devices. In this study, in-situ measurements of moisture absorption and diffusion behavior of a thin epoxy-based molding compound (EMC) were taken by using thermogravimetric analysis under a controlled temperature and humidity conditions. Based on sample mass increase versus time at a fixed temperature and relative humidity, saturated moisture content and moisture diffusivity can be determined. At 80 °C, non-Fickian moisture diffusion was noticed, especially at the later stage of the diffusion process. At lower temperatures such as 60 and 30 °C, the diffusion process can be described by the Fickian diffusion model, and the diffusion constant follows an Arrhenius temperature dependence. Hygroscopic swelling, or dimensional change of the material due to moisture absorption, has been characterized using a dynamic mechanical analyzer equipped with a moisture delivering system to generate a controlled relative humidity (DMA-RH system) at various isothermal temperatures. The results suggested that the strain due to hygroscopic swelling is on the same order of magnitude comparing with the strain caused by thermal expansion as temperature changes over several tens of degrees Celsius. The results were used for modeling package stress evolution during reliability testing, and for mitigating the adversary effects of moisture absorption in the EMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kinjo N, Ogata M, Nishi K, Kaneda A. Epoxy compounds as encapsulation materials for microelectronic devices. Adv Polym. 1987;88:1–48.

    Google Scholar 

  2. Sasajima H, Watanabe I, Takamoto M, Dakede K, Itoh S, Nishitani Y, Tabei J, Mori T. New development trend of epoxy molding compound for encapsulating semiconductor chips, Ch. 9. In: Lu D, Wong C, editors. Materials for Advanced Packaging. 2nd ed. Cham: Springer; 2009. https://doi.org/10.1007/978-3-319-45098-8_9.

    Chapter  Google Scholar 

  3. McKague EL Jr, Reynolds JD, Halkias JE. Swelling and glass transition relations for epoxy matrix material in humid environments. J Appl Polym Sci. 1978;22(6):1643–54. https://doi.org/10.1002/app.1978.070220615.

    Article  CAS  Google Scholar 

  4. Chung H, Lee C, Han H. Moisture-induced stress relaxation of polyimide thin films. Polymer. 2001;42(1):319–28. https://doi.org/10.1016/S0032-3861(00)00341-4.

    Article  CAS  Google Scholar 

  5. Lin YC, Chen X. Moisture sorption-desorption characteristics and its effect on the mechanical behavior of the epoxy system. Polymer. 2005;46(25):11994–2003. https://doi.org/10.1016/j.polymer.2005.10.002.

    Article  CAS  Google Scholar 

  6. Tam L, Lau D. Moisture effect on the mechanical and interfacial properties of epoxy-bonded material system: an atomistic and experimental investigation. Polymer. 2015;57(1):132–42. https://doi.org/10.1016/j.polymer.2014.12.026.

    Article  CAS  Google Scholar 

  7. Fukuzawa I, Ishiguro S, Nanbu S. Moisture resistance degradation of plastic LST’s by reflow soldering. In: Proceedings of 23rd international reliability physics symposium, Orlando, FL, March 26–28; 1985, p. 192–7.

  8. Zain SMMSM, Ani FC, Ramli MR, Jalar A, Bakar MA, et al. Effect of moisture content on crack formation during reflow soldering of ball grid array (BGA) component. In: Mat Jizat JA, et al., editors. Advances in robotics, automation and data analytics. Cham: Springer; 2021. p. 309–14. https://doi.org/10.1007/978-3-030-70917-4_29.

    Chapter  Google Scholar 

  9. Galloway JE, Miles BM. Moisture absorption and desorption predictions for plastic ball grid array packages. IEEE Trans Comp Packag Manuf Technol A. 1997;20(3):274–9. https://doi.org/10.1109/95.623021.

    Article  CAS  Google Scholar 

  10. Ferguson T, Qu J. Moisture absorption analysis of interfacial fracture test specimens composed of no-flow underfill materials. J Electron Packag. 2003;125:24–30. https://doi.org/10.1115/1.1524132.

    Article  CAS  Google Scholar 

  11. Stellrecht E, Han B, Pecht MG. Characterization of hygroscopic swelling behavior of mold compounds and plastic packages. IEEE Trans Comp Packag Technol. 2004;27(3):499–506. https://doi.org/10.1109/TCAPT.2004.831777.

    Article  CAS  Google Scholar 

  12. Ferguson T, Qu J. Elastic modulus variation due to moisture absorption and permanent changes upon redrying in an epoxy based underfill. IEEE Trans Comp Packag Technol. 2006;29(1):105–11. https://doi.org/10.1109/TCAPT.2005.853172.

    Article  Google Scholar 

  13. He Y. Moisture absorption and hygroscopic swelling behavior of an underfill material. Thermochi Acta. 2012;546:143–52. https://doi.org/10.1016/j.tca.2012.07.016.

    Article  CAS  Google Scholar 

  14. Shirangi MH, Michel B. Mechanism of moisture diffusion, hygroscopic swelling, and adhesion degradation in epoxy molding compounds. In: Fan XJ, Suhir E, editors. Moisture sensitivity of plastic packages of IC devices, Ch. 2. New York: Springer; 2010. https://doi.org/10.1007/978-1-4419-5719-1_2.

    Chapter  Google Scholar 

  15. Ardebili H, Wong EH, Pecht M. Hygroscopic swelling and sorption characteristics of epoxy molding compounds used in electronic packaging. IEEE Trans Comp Packag Technol. 2003;26(1):206–14. https://doi.org/10.1109/TCAPT.2002.806172.

    Article  Google Scholar 

  16. Shirangi H, Auersperg J, Koyuncu M, Walter H, Müller WH, Michel B. Characterization of dual-stage moisture diffusion, residual moisture content and hygroscopic swelling of epoxy molding compounds. In: 9th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2008, Freiburg im Breisgau, Germany, Apr 20–23, 2008. p. 1–8; https://doi.org/10.1109/ESIME.2008.4525009.

  17. Walter H, Hölck O, Dobrinski H , Stuermann J, Braun T, Bauer J, Wittler O, Lang KD. Moisture induced swelling in epoxy moulding compounds. In: Proceedings of 63rd IEEE Electronic Components and Technology Conference (ECTC), Las Vegas, NV, May 28–31;2013, p. 1703–8; https://doi.org/10.1109/ECTC.2013.6575803.

  18. Su F, Chian KS, Yi S. An optical characterization technique for hygroscopic expansion of polymers and plastic packages. Microelec Reliab. 2006;46:600–9. https://doi.org/10.1016/j.microrel.2005.06.017.

    Article  CAS  Google Scholar 

  19. Zhou J, Lee TY, Fan XJ. Hygroscopic swelling of polymeric materials in electronic packaging: characterization and analysis, Ch. 7. In: Fan XJ, Suhir E, editors. Moisture sensitivity of plastic packages of IC devices. New York: Springer; 2010. https://doi.org/10.1007/978-1-4419-5719-1_7.

    Chapter  Google Scholar 

  20. Crank J. The Mathematics of Diffusion. 2nd ed. Oxford: Oxford University Press; 1990.

    Google Scholar 

  21. He Y, Fan XJ. In-situ characterization of moisture absorption and desorption in a thin BT core substrate. In: Proceedings of 57th IEEE Electronic Components and Technology Conference (ECTC), Reno, NV, May 29–June 1; 2007, p. 1375–83. https://doi.org/10.1109/ECTC.2007.373974.

  22. Jiang X, Kolstein H, Bijlaard SK. Moisture diffusion in glass-fiber-reinforced polymer composite bridge under hot/wet environment. Compos B. 2013;45:407–16. https://doi.org/10.1016/j.compositesb.2012.04.067.

    Article  CAS  Google Scholar 

  23. Wong KJ, Low KO, Israr HA, Tamin MN. Thickness-dependent non-Fickian moisture absorption in epoxy molding compounds. Microelec Reliab. 2016;65:160–6. https://doi.org/10.1016/j.microrel.2016.08.014.

    Article  CAS  Google Scholar 

  24. Barink M, Mavinkurve A, Janssen J. Predicting non-Fickian moisture diffusion in EMCs for application in micro-electronic devices. Microelec Reliab. 2016;62:45–9. https://doi.org/10.1016/j.microrel.2016.03.016.

    Article  Google Scholar 

  25. Celik E, Guven I, and Madenci E. Experimental and numerical characterization of non-Fickian moisture diffusion in electronic packages. In: Proceedings of 57th IEEE Electronic Components and Technology Conference (ECTC), Reno, NV, May 29–June 1; 2007. p. 1069–73. https://doi.org/10.1109/ECTC.2007.373930.

  26. Borg RJ, Dienes GJ. An introduction to solid state diffusion. San Diego: Academic; 1988. p. 60.

    Google Scholar 

  27. He Y, Alam Z. Moisture absorption and diffusion in an underfill encapsulant at T > Tg and T < Tg. J Therm Anal Calorim. 2013;113:461–6. https://doi.org/10.1007/s10973-013-3074-7.

    Article  CAS  Google Scholar 

  28. Hopcroft MA, Nix WD, Kenny TW. What is the Young’s modulus of silicon? J Microelectromech Sys. 2010;19:229–38. https://doi.org/10.1109/JMEMS.2009.2039697.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Kabiri, M. In-situ characterization of moisture absorption and hygroscopic swelling of an epoxy molding compound for electronic packaging. J Therm Anal Calorim 147, 5667–5675 (2022). https://doi.org/10.1007/s10973-021-10941-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10941-w

Keywords

Navigation