Skip to main content
Log in

Cold crystallization event on DSC heating curves of bitumen

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) is the main technique of studying the thermal behavior and forming the structure of bitumen. One of the thermal effects on the DSC heating curves in the study of bitumen is a low-temperature exotherm. The origin and features of this phenomenon formation have not yet been investigated despite the relevance of the issue. Inaccuracy of this exotherm identification leads to an incorrect estimation of the quantitative parameters of the low-temperature glass transition and the amount of the crystalline fraction of bitumen. Using the temperature-modulated DSC (TMDSC) method, it is shown that the low-temperature exotherm is due to the cold crystallization of wax molecules. The dependences of the cold crystallization exotherm enthalpy on various experimental conditions, such as the annealing time and temperature, and the cooling rate are investigated. It is established that these conditions affect the value of the cold crystallization exotherm enthalpy through a change in the amount of the substance involved in the process. In order to avoid incorrect identification and interpretation, a comparative analysis of the conditions for the formation of cold crystallization event with another exothermic effect observed on the DSC heating curves of bitumen—the exothermic recrystallization of secondary wax crystals—was performed. The results obtained can be used as reference information for the study of bitumen by TMDSC and conventional DSC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu X, Burnham NA, Granados-Focil S, Tao M. Bitumen’s microstructures are correlated with its bulk thermal and rheological properties. Fuel. 2019;254:115509.

    Article  CAS  Google Scholar 

  2. Frolov IN, Okhotnikova ES, Ziganshin MA, Firsin AA. Thermodynamic and thermokinetic processes of formation disperse structures of bitumen. Pet Sci Technol. 2017;35:2277–82.

    Article  CAS  Google Scholar 

  3. Frolov IN, Yusupova TN, Ziganshin MA, Okhotnikova ES, Firsin AA. Dynamics of formation of asphalt microstructure according to modulated differential scanning calorimetry data. Pet Chem. 2017;57:1002–6.

    Article  CAS  Google Scholar 

  4. Khoshooei M, Fazlollahi F, Maham Y, Hassan A, Pereira-Almao P. A review on the application of differential scanning calorimetry (DSC) to petroleum products. J Therm Anal Calorim. 2019;138:1–26.

    Google Scholar 

  5. Frolov IN, Okhotnikova ES, Ziganshin MA, Yusupova TN, Firsin AA. The study of bitumen by differential scanning calorimetry: the interpretation of thermal effects. Pet Sci Technol. 2019;37:417–24.

    Article  CAS  Google Scholar 

  6. Xia W, Wang S, Wang H, Xu T. Thermal effects of asphalt SARA fractions, kinetic parameter calculation using isoconversional method and distribution models. J Therm Anal Calorim. 2020.

  7. Okhotnikova ES, Ganeeva YM, Frolov IN, Ziganshin MA, Firsin AA, Timirgalieva AH, et al. Thermal and structural characterization of bitumen by modulated differential scanning calorimetry. J Therm Anal Calorim. 2020;142:211–6.

    Article  CAS  Google Scholar 

  8. Frolov IN, Okhotnikova ES, Ziganshin MA, Firsin AA. Interpretation of double-peak endotherm on DSC heating curves of bitumen. Energy Fuels Am Chem Soc. 2020;34:3960–8.

    Article  CAS  Google Scholar 

  9. Frolov IN, Yusupova TN, Ziganshin MA, Okhotnikova ES, Firsin AA. Formation of phase composition of petroleum bitumen according to data of temperature modulated differential scanning calorimetry. J Therm Anal Calorim. 2018;131:555–60.

    Article  CAS  Google Scholar 

  10. Michon LC, Netzel DA, Turner TF, Martin D, Planche J-P. A 13 C NMR and DSC study of the amorphous and crystalline phases in asphalts. Energy Fuels. 1999;13:602–10.

    Article  CAS  Google Scholar 

  11. Hansen AB, Larsen E, Pedersen WB, Nielsen AB, Ronningsen HP, Elfinn L, et al. Wax precipitation from North Sea crude oils. 3. Precipitation and dissolution of wax studied by differential scanning calorimetry. Energy Fuels Am Chem Soc. 1991;5:914–23.

    Article  Google Scholar 

  12. Claudy PM, Létoffé JM, Martin D, Planche JP. Thermal behavior of asphalt cements. Thermochim Acta. 1998;324:203–13.

    Article  CAS  Google Scholar 

  13. Claudy PM, Létoffé JM, Chagué B, Orrit J. Crude oils and their distillates: characterization by differential scanning calorimetry. Fuel. 1988;67:58–61.

    Article  CAS  Google Scholar 

  14. Jiménez-Mateos JM, Quintero LC, Rial C. Characterization of petroleum bitumens and their fractions by thermogravimetric analysis and differential scanning calorimetry. Fuel. 1996;75:1691–700.

    Article  Google Scholar 

  15. Soenen H, Besamusca J, Fischer HR, Poulikakos LD, Planche JP, Das PK, et al. Laboratory investigation of bitumen based on round robin DSC and AFM tests. Mater Struct Constr. 2014;47:1205–20.

    Article  CAS  Google Scholar 

  16. Claudy PM, Letoffe JM, King GN, Planche JP, Brule B. Characterization of paving asphalts by differential scanning calorimetry. Fuel Sci Technol Int. 1991;9:71–92.

    Article  CAS  Google Scholar 

  17. Létoffé JM, Planche JP, Lapalu L, Martin D. Role of heat treatment in the DSC-based determination of the thermal characteristics of road bitumens. Bull des Lab des Ponts Chaussees. 2002;240:3–13.

    Google Scholar 

  18. Planche JP, Claudy PM, Létoffé JM, Martin D. Using thermal analysis methods to better understand asphalt rheology. Thermochim Acta. 1998;324:223–7.

    Article  CAS  Google Scholar 

  19. Chambrion P, Bertau R, Ehrburger P. Characterization of bitumen by differential scanning calorimetry. Fuel. 1996;75:144–8.

    Article  CAS  Google Scholar 

  20. Harrison IR, Wang G, Hsu TC. A Differential Scanning Calorimetry Study of Asphalt Binders. Strateg Highw Res Program: Natl Res Counc DC, Washington; 1992. p. 43.

    Google Scholar 

  21. Masson JF, Polomark GM. Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta. 2001;374:105–14.

    Article  CAS  Google Scholar 

  22. Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci Elsevier. 2009;145:42–82.

    Article  CAS  Google Scholar 

  23. Wunderlich B. Thermal analysis of polymeric materials. Techniques. Techniques; 2005.

  24. Gill PS, Sauerbrunn SR, Reading M. Modulated differential scanning calorimetry. J Therm Anal. 1993;40:931–9.

    Article  CAS  Google Scholar 

  25. Létoffé JM, Claudy PM, Garcin M, Volle JL. Evaluation of crystallized fractions of crude oils by differential scanning calorimetry: Correlation with gas chromatography. Fuel. 1995;74:92–5.

    Article  Google Scholar 

  26. Noel F, Corbett A. A study of the crystalline phases in asphalts. JInstPetrol. 1970;56:261–8.

    CAS  Google Scholar 

  27. Masson JF, Polomark GM, Collins P. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuels. 2002;16:470–6.

    Article  CAS  Google Scholar 

  28. Masson JF, Polomark GM, Bundalo-Perc S, Collins P. Melting and glass transitions in paraffinic and naphthenic oils. Thermochim Acta. 2006;440:132–40.

    Article  CAS  Google Scholar 

  29. Wunderlich B. Theory of Cold Crystallization of High Polymers. J Chem Phys. 1958;29:1395–404.

    Article  CAS  Google Scholar 

  30. Edwards Y, Redelius P. Rheological effects of waxes in Bitumen. Energy Fuels. 2003;17:511–20.

    Article  CAS  Google Scholar 

  31. Dorset DL. Crystallography of real waxes: branched chain packing in microcrystalline petroleum wax studied by electron diffraction. Energy Fuels. 2000;14:685–91.

    Article  CAS  Google Scholar 

  32. Edwards Y, Isacsson U. Wax in bitumen: part 1—classifications and general aspects. Road Mater Pavement Des. 2005;6:281–309.

    Article  Google Scholar 

  33. Srivastava SPP, Handoo J, Agrawal KMM, Joshi GCC. Phase-transition studies in n-alkanes and petroleum-related waxes—a review. J Phys Chem Solids Pergamon. 1993;54:639–70.

    Article  CAS  Google Scholar 

  34. Andrade DEV, Marcelino Neto MA, Negrão COR. The importance of supersaturation on determining the solid-liquid equilibrium temperature of waxy oils. Fuel. 2017;206:516–23.

    Article  CAS  Google Scholar 

  35. Fan K, Huang Q, Li S. Determination of the optimizing operating procedure for DSC test of wax-solvent samples with narrow and sharp wax peak and error analysis of data reliability. J Therm Anal Calorim. 2016;126:1713–25.

    Article  CAS  Google Scholar 

  36. Sirota EB. Supercooling and transient phase induced nucleation in n-alkane solutions. J Chem Phys. 2000;112:492–500.

    Article  CAS  Google Scholar 

  37. Japper-Jaafar A, Bhaskoro PTT, Mior ZSS. A new perspective on the measurements of wax appearance temperature: comparison between DSC, thermomicroscopy and rheometry and the cooling rate effects. J Pet Sci Eng. 2016;147:672–81.

    Article  CAS  Google Scholar 

  38. Senra M, Scholand T, Maxey C, Fogler HS. Role of polydispersity and cocrystallization on the gelation of long-chained n-alkanes in solution. Energy Fuels Am Chem Soc. 2009;23:5947–57.

    Article  CAS  Google Scholar 

  39. Luo C, Sommer J-U, Schreiner E, Castro IG, Tinsley J, Weiss H. Length-dependent segregation in crystallization of n-alkanes: MD simulations. J Non Cryst Solids North Holland. 2015;407:206–12.

    Article  CAS  Google Scholar 

  40. Schick C, Wurm A, Mohamed A. Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym Sci. 2001;279:800–6.

    Article  CAS  Google Scholar 

  41. Frolov IN, Yusupova TN, Ziganshin MA, Okhotnikova ES, Firsin AA. Features of colloidal disperse structure formation in petroleum bitumen. Colloid J. 2016;78:712–6.

    Article  CAS  Google Scholar 

  42. Kumar S, Agrawal KM, Khan HU, Sikora A. Study of phase transition in hard microcrystalline waxes and wax blends by differential scanning calorimetry. Pet Sci Technol. 2004;22:337–45.

    Article  CAS  Google Scholar 

  43. Ciesińska W, Liszyńska B, Zieliński J. Selected thermal properties of polyethylene waxes. J Therm Anal Calorim. 2016;125:1439–43.

    Article  Google Scholar 

  44. Coto B, Martos C, Espada JJ, Robustillo MD, Merino-García D, Peña JL. Study of new methods to obtain the n-paraffin distribution of crude oils and its application to flow assurance. Energy Fuels. 2011;25:487–92.

    Article  CAS  Google Scholar 

  45. Goual L, Schabron JF, Turner TF, Towler BF. On-column separation of wax and asphaltenes in petroleum fluids. Energy Fuels. 2008;22:4019–28.

    Article  CAS  Google Scholar 

  46. Netzel DA. Low temperature studies of amorphous, interfacial, and crystalline phases in asphalts using solid-state 13 C nuclear magnetic resonance. Transp Res Rec J Transp Res Board. 1998;1638:23–30.

    Article  Google Scholar 

  47. Kriz P, Stastna J, Zanzotto L. Glass transition and phase stability in asphalt binders. Road Mater Pavement Des. 2008;9:37–65.

    Article  Google Scholar 

  48. Lizundia E, Petisco S, Sarasua J-R. Phase-structure and mechanical properties of isothermally melt-and cold-crystallized poly (l-lactide). J Mech Behav Biomed Mater. 2013;17:242–51.

    Article  CAS  PubMed  Google Scholar 

  49. Schawe JEK, Höhne GWH. Modulated temperature DSC measurements relating to the cold crystallization process of poly(ethylene terephtalate). J Therm Anal. 1996;46:893–903.

    Article  CAS  Google Scholar 

  50. Wang Z-GG, Hsiao BSS, Sauer BBB, Kampert WGG. The nature of secondary crystallization in poly(ethylene terephthalate). Polymer (Guildf). 1999;40:4615–27.

    Article  CAS  Google Scholar 

  51. Hurt RH, Hu Y. Thermodynamics of carbonaceous mesophase. Carbon N Y. 1999;37:281–92.

    Article  CAS  Google Scholar 

  52. Destrade C, Tinh NH, Gasparoux H, Malthete J, Levelut AM. Disc-like mesogens: a classification. Mol Cryst Liq Cryst. 1981;71:111–35.

    Article  CAS  Google Scholar 

  53. Destrade C, Foucher P, Gasparoux H, Huu Tinh N, Levelut AM, Malthete J. Disc-like mesogen polymorphism. Mol Cryst Liq Cryst. 1984;106:121–46.

    Article  CAS  Google Scholar 

  54. Speight JG. The chemistry and technology of petroleum. 5th ed. Boca Rato: CRC Press; 2014.

    Book  Google Scholar 

  55. Okhotnikova ES, Ziganshin MA, Firsin AA, Frolov IN, Yusupova TN. Interpretation of thermal effects in differential scanning calorimetry study of asphalts. Pet Chem. 2018;58:593–8.

    Article  Google Scholar 

  56. Paka J, Boller A, Moon I, Pyda M, Wunderlich B. Thermal analysis of paraffins by calorimetry. Thermochim Acta. 2000;357–358:259–66.

    Article  Google Scholar 

Download references

Acknowledgements

Ziganshin M.A. acknowledges financial support from the Ministry of Science and Higher Education of Russian Federation (Grant No. 14.Y26.31.0019). The study of the composition of bitumens was carried out by Okhotnikova E.S. in the framework of the state assignment FRC Kazan Scientific Center of RAS

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Firsin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, I.N., Okhotnikova, E.S., Ziganshin, M.A. et al. Cold crystallization event on DSC heating curves of bitumen. J Therm Anal Calorim 147, 5269–5278 (2022). https://doi.org/10.1007/s10973-021-10908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10908-x

Keywords

Navigation